Undergrad Fourier coefficients of convolution

  • Thread starter Thread starter psie
  • Start date Start date
  • Tags Tags
    Fourier analysis
Click For Summary
The discussion focuses on deriving the Fourier coefficients of the convolution of two functions, represented as h(x) = (f*g)(x). The initial expression for the Fourier coefficients is transformed by changing the order of integration, leading to a new integral involving g(y) and an inner integral of f(x-y). A substitution t = x - y is proposed to simplify the inner integral, but it complicates the limits of integration. The periodicity of h(t) with period 2π is utilized to maintain the integration limits, allowing the result to be expressed in a standard interval. Ultimately, this approach successfully proves the desired result for the Fourier coefficients of the convolution.
psie
Messages
315
Reaction score
40
TL;DR
I'm trying to verify to myself that the Fourier coefficients of a convolution are the products of the coefficients of the convoluted functions, but I get stuck.
Let ##h(x)=(f*g)(x)=\frac1{2\pi}\int_{-\pi}^\pi f(x-y)g(y)dy## be the convolution. Then its Fourier coefficients are given by $$ {1\over2\pi}\int_{-\pi}^\pi (f*g)(x)e^{-inx}dx={1\over4\pi^2}\int_{-\pi}^\pi\left(\int_{-\pi}^\pi f(x-y)g(y)dy\right)e^{-inx}\ dx\ . $$
Changing the order of integration, we get $${1\over4\pi^2}\int_{-\pi}^\pi g(y) \left(\int_{-\pi}^\pi f(x-y)e^{-inx} dx\right)\,dy\ .$$ Now here I'd like to do the substitution ##t=x-y## in the inner integral, but this makes the limits of integration depend on ##y##, which I do not want. How can I go about this issue?

EDIT: I know that ##h(t)## is periodic with period ##2\pi##. I don't know if this can be helpful in any way.
 
Physics news on Phys.org
I guess, after the substitution ##t=x-y##, we get $${1\over4\pi^2}\int_{-\pi}^\pi g(y)e^{-iny} \left(\int_{-\pi-y}^{\pi-y} f(t)e^{-int} dt\right)dy .$$ So here the interval ##[-\pi-y,\pi-y]## is still an interval over a whole period, so we can safely replace it ##[-\pi,\pi]## since ##y## is kept constant in the inner integral anyway. Therefor we get $${1\over4\pi^2}\int_{-\pi}^\pi g(y) e^{-iny}\left(\int_{-\pi}^\pi f(t) e^{-int} dt\right)\,dy\ ,$$ which proves the result.
 
  • Like
Likes fresh_42 and FactChecker
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
586