I Generalized Eigenvalues of Pauli Matrices

thatboi
Messages
130
Reaction score
20
Consider a generic Hermitian 2x2 matrix ##H = aI+b\sigma_{x}+c\sigma_{y}+d\sigma_{z}## where ##a,b,c,d## are real numbers, ##I## is the identity matrix and ##\sigma_{i}## are the 2x2 Pauli Matrices. We know that the eigenvalues for ##H## is ##d\pm\sqrt{a^2+b^2+c^2}## but now suppose I have the matrix ##\tilde{H} = (\sigma_{x} \otimes A) + (\sigma_{y} \otimes B) + (\sigma_{z} \otimes C)## , where ##\otimes## denotes the Kronecker product and ##A,B,C## are now N x N diagonal matrices with diagonal entries ##a_{i},b_{i},c_{i}## respectively. I'm wondering if there is some nice generalization of the 2x2 eigenvalue formula in my first statement? I feel like there must be.
 
Physics news on Phys.org
I did some half-baked thinking and scratch work and think it is tractable. Seems like the answer is ##c_i \pm \sqrt{a_i^2+b_i^2}##. The matrix can be written as something that looks like:

##\tilde{H}=diag(a_1\sigma_x+b_1\sigma_y+c_1\sigma_z, \ldots,a_N\sigma_x+b_N\sigma_y+c_N\sigma_z)##

So it is just a bunch of copies of the simple case.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top