Generating Function for Gambler's Probs of Broke at Time n

Click For Summary
SUMMARY

The discussion centers on the gambler's ruin problem, specifically calculating the probability that a gambler first becomes broke at time n, denoted as fn. It is established that fn equals zero for even n, while for odd n, fn can be expressed as f_{2n+1} = C_n p^n (1-p)^{n+1}, where C_n represents the nth Catalan number. The generating function for these probabilities is derived as G(x) = (1 - √(1 - 4p(1-p)x²)) / (2px). This formulation allows for further exploration of the problem using generating functions and recursive relations.

PREREQUISITES
  • Understanding of the gambler's ruin problem
  • Familiarity with binomial distributions and Catalan numbers
  • Knowledge of generating functions in probability theory
  • Basic concepts of recursive relations
NEXT STEPS
  • Study the properties of Catalan numbers and their applications in combinatorial problems
  • Learn about generating functions in probability, specifically in relation to discrete random variables
  • Explore alternative methods for solving the gambler's ruin problem, such as expected value approaches
  • Investigate the implications of different probability distributions on the gambler's ruin scenario
USEFUL FOR

Mathematicians, statisticians, and students studying probability theory, particularly those interested in combinatorial problems and generating functions.

oyth94
Messages
32
Reaction score
0
Suppose a gambler starts with one dollar and plays a game in which he or she wins one dollar with probability p and loses one dollar with probability 1 - p. Let fn be the probability that he or she fi rst becomes broke at time n for n = 0, 1, 2... Find a generating function for these probabilities.

So I think this is a binomial distribution is it? because it is giving me the fn = probability when first become broke.
since it is asking to find a generating function is use the
mx(s) = rx(es).
so since (i think) it is a binomial dist
then i let X ~ Binomial(n, theta)
and we know that the rx(t) = (t x theta + 1 - theta)n
so mx(s) = rx(es) = (estheta + 1 - theta)n
am i on the right track? i think i am not.. please help?
 
Physics news on Phys.org
Re: generating function

oyth94 said:
Suppose a gambler starts with one dollar and plays a game in which he or she wins one dollar with probability p and loses one dollar with probability 1 - p. Let fn be the probability that he or she first becomes broke at time n for n = 0, 1, 2... Find a generating function for these probabilities.

So I think this is a binomial distribution is it? because it is giving me the fn = probability when first become broke.
since it is asking to find a generating function is use the
mx(s) = rx(es).
so since (i think) it is a binomial dist
then i let X ~ Binomial(n, theta)
and we know that the rx(t) = (t x theta + 1 - theta)n
so mx(s) = rx(es) = (estheta + 1 - theta)n
am i on the right track? i think i am not.. please help?

The first step is the computation of $p_{n}$, i.e. the probability that he/she first becomes broke at the n-th step. It is not too difficult to realize that $p_{n}=0$ for n even and for n odd is... $\displaystyle p_{2 n+ 1} = (1 - p)\ h_{n}\ [p\ (1-p)]^{n}\ (1)$ ... where $h_{n}$ obeys to the recursive relation... $\displaystyle h_{n+1} = h_{n} + n,\ h_{1}=1\ (2)$... so that is...

$\displaystyle p_{n}= (1-p)\ \frac{n^{2} - n + 2}{2}\ [p\ (1-p)]^{n}\ (3)$

The (3) can now be used to valuate the generating function... Kind regards $\chi$ $\sigma$
 
Last edited:
Re: generating function

oyth94 said:
Suppose a gambler starts with one dollar and plays a game in which he or she wins one dollar with probability p and loses one dollar with probability 1 - p. Let fn be the probability that he or she first becomes broke at time n for n = 0, 1, 2... Find a generating function for these probabilities.

So I think this is a binomial distribution is it? because it is giving me the fn = probability when first become broke.
since it is asking to find a generating function is use the
mx(s) = rx(es).
so since (i think) it is a binomial dist
then i let X ~ Binomial(n, theta)
and we know that the rx(t) = (t x theta + 1 - theta)n
so mx(s) = rx(es) = (estheta + 1 - theta)n
am i on the right track? i think i am not.. please help?
This is a version of the gambler's ruin problem. As chisigma points out, the probability $f_n$ of becoming broke at the $n$th step is $0$ if $n$ is even. In the case where it is odd, $f_{2n+1} = C_np^n(1-p)^{n+1}$, where $C_n$ is the $n$th Catalan number. Using the first of those two links, you can check that the generating function for these probabilities can be expressed in the form $$\frac{1-\sqrt{1-4p(1-p)x^2}}{2px}.$$
 
Is there any other way to solve it besides using Catalan number and recursive relation and gamblers ruin?? Like using expected value or different distributions of some sort?
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
11
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K