MHB Geometric Sequence find the 23rd term.

AI Thread Summary
The function for the geometric sequence is defined as a_n = a_1•r^(n-1), where a_1 is the initial value of 25 and r is the common ratio of 1.8. To find the 23rd term, the calculation is a_23 = 25•(1.8)^(22), resulting in a_23 = 10326071.3. The answer is confirmed to be correct when rounded to one decimal place. The discussion also touches on the rationale for presenting the answer to one decimal place.
mathdad
Messages
1,280
Reaction score
0
A geometric sequence has an initial value of 25 and a common ratio of 1.8. Write a function to represent this sequence . Find the 23rd term.

My Effort:

The needed function is

a_n = a_1•r^(n-1), n is the 23rd term, r is the common ratio and a_1 is the initial value.

a_23 = 25•(1.8)^(23 - 1)

Is this correct?
 
Mathematics news on Phys.org
yes
 
a_23 = 25 * 1.8(23-1)

a_23 = 25 * (1.8)^(22)

a_23 = 10326071.3

Correct?
 
To one decimal place, yes. Do you have a reason for choosing to write the answer to one decimal place?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
3
Views
2K
Replies
5
Views
2K
Replies
1
Views
2K
Replies
2
Views
3K
Replies
1
Views
2K
Replies
22
Views
5K
Replies
3
Views
3K
Replies
2
Views
3K
Back
Top