find_the_fun
- 147
- 0
Solve the differential equation [math](5x+4y)dx+(4x-8y^3)dy=0[/math]
So [math]M(x, y) = 5x+4y[/math] and [math]N(x, y) = 4x-8y^3[/math]
Check [math]\frac{\partial M}{\partial y} = 4[/math] and [math]\frac{ \partial N}{\partial x} = 4 [/math] check passed.
[math]f(x, y) = \int M \partial x + g(y) = \int 5x+4y \partial x + g(y) = \frac{5x^2}{2} + 4yx + g(y) [/math]
[math]\frac{\partial f(x, y)}{\partial y} = g'(y) = 4x-8y^3[/math]
Therefore [math]g(y) = 4xy-2y^4[/math]
So [math]f(x, y)=\frac{5x^2}{2}+4yx+4yx-2y^4[/math]
The back of book has only one 4yx so what did I do wrong? Also the back of the book has the equation [math]=C[/math] and I don't understand why?
So [math]M(x, y) = 5x+4y[/math] and [math]N(x, y) = 4x-8y^3[/math]
Check [math]\frac{\partial M}{\partial y} = 4[/math] and [math]\frac{ \partial N}{\partial x} = 4 [/math] check passed.
[math]f(x, y) = \int M \partial x + g(y) = \int 5x+4y \partial x + g(y) = \frac{5x^2}{2} + 4yx + g(y) [/math]
[math]\frac{\partial f(x, y)}{\partial y} = g'(y) = 4x-8y^3[/math]
Therefore [math]g(y) = 4xy-2y^4[/math]
So [math]f(x, y)=\frac{5x^2}{2}+4yx+4yx-2y^4[/math]
The back of book has only one 4yx so what did I do wrong? Also the back of the book has the equation [math]=C[/math] and I don't understand why?