MHB Graded poset definition trouble

  • Thread starter Thread starter caffeinemachine
  • Start date Start date
  • Tags Tags
    Definition
caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Graded poset on wiki: Graded poset - Wikipedia, the free encyclopedia

Wikipedia defines a 'graded Poset' as a poset $P$ such that there exists a function $\rho:P\to \mathbb N$ such that $x< y\Rightarrow \rho(x)< \rho(y)$ and $\rho(b)=\rho(a)+1$ whenever $b$ covers $a$.

Then if you go to the 'Alternative Characterizations' on the page whose link I gave above you would see that the first line reads:
A bounded poset admits a grading if and only if all maximal chains in $P$ have the same length.
Here's the problem. Consider $P=\{a,b,c,d\}$ with $a<b,b<d,a<c,a<d$. All other pairs are incomparable. Then according to the first definition $P$ is a graded poset while the second definition says otherwise.

Maybe I am committing a very silly mistake but just can't find it.

Please help.
 
Physics news on Phys.org
Re: graded poset definition trouble

caffeinemachine said:
Consider $P=\{a,b,c,d\}$ with $a<b,b<d,a<c,a<d$. All other pairs are incomparable. Then according to the first definition $P$ is a graded poset while the second definition says otherwise.
This is indeed a graded poset, but it is not a bounded poset. The latter has to have a least and a greatest elements.
 
Re: graded poset definition trouble

Evgeny.Makarov said:
This is indeed a graded poset, but it is not a bounded poset. The latter has to have a least and a greatest elements.

Thanks! Guess it will take some time for the definitions to sink in.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top