MHB Graph that models one but not both

  • Thread starter Thread starter Andrei1
  • Start date Start date
  • Tags Tags
    Graph Models
Andrei1
Messages
36
Reaction score
0
Here is an exercise from Shawn Hedman's course of logic, like all others I have posted.
Show that the sentences $\forall x \exists y\forall z(R(x,y)\wedge R(x,z)\wedge R(y,z))$ and $\exists x\forall y\exists z(R(x,y)\wedge R(x,z)\wedge R(y,z))$ are not equivalent by exhibiting a graph that models one but not both of these sentences.
I would say that only the empty graph is the correct solution, because if a structure is not empty then I can derive $\exists xR(x,x)$ from each of the given sentences.
 
Physics news on Phys.org
Andrei said:
I would say that only the empty graph is the correct solution, because if a structure is not empty then I can derive $\exists xR(x,x)$ from each of the given sentences.
You are basically right, but here is a couple of remarks. Definition 2.13 (in the 2006 edition) requires that the underlying set of a structure is nonempty, so the empty graph is not a structure. Second, it is wrong to say about two sentences A and B that A derives B if some structure has some property. We can say that B is a consequence of A, but this is irrespective of any particular structure (it means that M models B if M models A for all models M). What is the case here is that $\exists x\,R(x,x)$ is the consequence of either of the two given formulas, so these formulas are false in every graph (because the graph relation is supposed to be irreflexive: p. 66).
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...

Similar threads

Replies
2
Views
6K
Replies
6
Views
2K
Replies
18
Views
2K
Replies
2
Views
2K
Replies
2
Views
1K
Replies
4
Views
2K
Replies
3
Views
2K
Back
Top