- 24,753
- 794
Since we're on a new page I'll bring forward the links to what we're discussing in this thread. There's an online gravity+weak interaction unification talk today by Stephon Alexander, a field theorist at Dartmouth
http://relativity.phys.lsu.edu/ilqgs/
The title of the talk is Gravity Electroweak Unification
Before taking the professorship at Dartmouth, Alexander was at various places (Stanford-SLAC, London Imperial, Princeton, Haverford...). This particular unification program is one he has been working on with Marciano. Here's a talk by Marciano given at Perimeter in May of last year. It provides a good introduction to the main ideas. At that time Alexander and Marciano were working out the 3D case, as a preparation for attacking the problem in 4D.
http://pirsa.org/12050079/
Gravity and Yang-Mills Sectors from a Unified Theory and Their Relation with Dark Energy
Antonino Marciano
We propose a new method of unifying gravity and the Yang-Mills fields by introducing a spin-foam model. We realize a unification between an SU(2) Yang-Mills interaction and 3D general relativity by considering a constrained Spin(4) ~SO(4) Plebanski action. The theory is quantized a la spin-foam by implementing the analogue of the simplicial constraints for the Spin(4) symmetry, providing a way to couple Yang-Mills fields to spin-foams. We also present a way to recover 2-point correlation functions between the connections as a first way to implement scattering amplitudes between particle states. We conclude with speculations about extension of the model to 4D and incorporate a newly developed model of Dark Energy.
14/05/2012
Marciano will give an online ILQGS talk later this Spring (7 May) titled:
Emergence of BF theories and gravi-weak Plebanski models from spinors
This will be, in effect, a continuation of today's talk by Alexander which we now have slides for and hopefully will be hearing soon.
Another good introduction to this approach to unification is a couple of 15 minute talks presented at the October 2012 Perimeter conference on Experimental Search for QG.
http://pirsa.org/12100116
Quantum Gravity and the Weak Interactions
(Recorded in October 2012)
Alexander's segment begins after minute 18, around minute 19.
Smolin's talk follows immediately after that and begins around minute 35.
There is also a recent paper:
http://arxiv.org/abs/1212.5246
Gravitational origin of the weak interaction's chirality
Stephon Alexander, Antonino Marciano, Lee Smolin
(Submitted on 20 Dec 2012)
We present a new unification of the electro-weak and gravitational interactions based on the joining the weak SU(2) gauge fields with the left handed part of the space-time connection, into a single gauge field valued in the complexification of the local Lorentz group. Hence, the weak interactions emerge as the right handed chiral half of the space-time connection, which explains the chirality of the weak interaction. This is possible, because, as shown by Plebanski, Ashtekar, and others, the other chiral half of the space-time connection is enough to code the dynamics of the gravitational degrees of freedom.
This unification is achieved within an extension of the Plebanski action previously proposed by one of us. The theory has two phases. A parity symmetric phase yields, as shown by Speziale, a bi-metric theory with eight degrees of freedom: the massless graviton, a massive spin two field and a scalar ghost. Because of the latter this phase is unstable. Parity is broken in a stable phase where the eight degrees of freedom arrange themselves as the massless graviton coupled to an SU(2) triplet of chirally coupled Yang-Mills fields. It is also shown that under this breaking a Dirac fermion expresses itself as a chiral neutrino paired with a scalar field with the quantum numbers of the Higgs.
21 pages
My comment: The 4D work here has been carried out on a classical level. The Plebanski action is a formulation of classical GR (where the variable is a connection rather than a metric) and the idea here is to extend the Plebanski action to include some types of matter interaction. So this line of research seems to be aimed at opening a way to treat both geometry and matter as gauge fields in a single Plebanski-type action. Later on, as was done already in the 3D case, one might consider some background-independent, nonperturbative way of quantizing this combined gauge theory of geometry and weak interactions.
I should also bring forward Mitchell's most recent comment, which highlights the novelty of what Alexander and Marciano have initiated:
If you look closely I think you will see they have delineated a symmetry that exchanges spin and isospin. Interesting.
http://relativity.phys.lsu.edu/ilqgs/
The title of the talk is Gravity Electroweak Unification
Before taking the professorship at Dartmouth, Alexander was at various places (Stanford-SLAC, London Imperial, Princeton, Haverford...). This particular unification program is one he has been working on with Marciano. Here's a talk by Marciano given at Perimeter in May of last year. It provides a good introduction to the main ideas. At that time Alexander and Marciano were working out the 3D case, as a preparation for attacking the problem in 4D.
http://pirsa.org/12050079/
Gravity and Yang-Mills Sectors from a Unified Theory and Their Relation with Dark Energy
Antonino Marciano
We propose a new method of unifying gravity and the Yang-Mills fields by introducing a spin-foam model. We realize a unification between an SU(2) Yang-Mills interaction and 3D general relativity by considering a constrained Spin(4) ~SO(4) Plebanski action. The theory is quantized a la spin-foam by implementing the analogue of the simplicial constraints for the Spin(4) symmetry, providing a way to couple Yang-Mills fields to spin-foams. We also present a way to recover 2-point correlation functions between the connections as a first way to implement scattering amplitudes between particle states. We conclude with speculations about extension of the model to 4D and incorporate a newly developed model of Dark Energy.
14/05/2012
Marciano will give an online ILQGS talk later this Spring (7 May) titled:
Emergence of BF theories and gravi-weak Plebanski models from spinors
This will be, in effect, a continuation of today's talk by Alexander which we now have slides for and hopefully will be hearing soon.
Another good introduction to this approach to unification is a couple of 15 minute talks presented at the October 2012 Perimeter conference on Experimental Search for QG.
http://pirsa.org/12100116
Quantum Gravity and the Weak Interactions
(Recorded in October 2012)
Alexander's segment begins after minute 18, around minute 19.
Smolin's talk follows immediately after that and begins around minute 35.
There is also a recent paper:
http://arxiv.org/abs/1212.5246
Gravitational origin of the weak interaction's chirality
Stephon Alexander, Antonino Marciano, Lee Smolin
(Submitted on 20 Dec 2012)
We present a new unification of the electro-weak and gravitational interactions based on the joining the weak SU(2) gauge fields with the left handed part of the space-time connection, into a single gauge field valued in the complexification of the local Lorentz group. Hence, the weak interactions emerge as the right handed chiral half of the space-time connection, which explains the chirality of the weak interaction. This is possible, because, as shown by Plebanski, Ashtekar, and others, the other chiral half of the space-time connection is enough to code the dynamics of the gravitational degrees of freedom.
This unification is achieved within an extension of the Plebanski action previously proposed by one of us. The theory has two phases. A parity symmetric phase yields, as shown by Speziale, a bi-metric theory with eight degrees of freedom: the massless graviton, a massive spin two field and a scalar ghost. Because of the latter this phase is unstable. Parity is broken in a stable phase where the eight degrees of freedom arrange themselves as the massless graviton coupled to an SU(2) triplet of chirally coupled Yang-Mills fields. It is also shown that under this breaking a Dirac fermion expresses itself as a chiral neutrino paired with a scalar field with the quantum numbers of the Higgs.
21 pages
My comment: The 4D work here has been carried out on a classical level. The Plebanski action is a formulation of classical GR (where the variable is a connection rather than a metric) and the idea here is to extend the Plebanski action to include some types of matter interaction. So this line of research seems to be aimed at opening a way to treat both geometry and matter as gauge fields in a single Plebanski-type action. Later on, as was done already in the 3D case, one might consider some background-independent, nonperturbative way of quantizing this combined gauge theory of geometry and weak interactions.
I should also bring forward Mitchell's most recent comment, which highlights the novelty of what Alexander and Marciano have initiated:
mitchell porter said:On slide 26, the idea of a boson and fermion being related by parity is repeated.
I know the people reading this thread are not field theorists and so I shouldn't expect an answer, but really, I defy anyone to produce a lagrangian or otherwise define a meaningful theory in which that is the case.
If you look closely I think you will see they have delineated a symmetry that exchanges spin and isospin. Interesting.
Last edited: