Gravity vs Diffraction in Troposphere of a Star

Click For Summary
SUMMARY

The discussion focuses on the competing effects of gravity and refraction in the bending of light near a star's surface. Gravity is established as a primary cause of light deflection due to the star's mass, while the troposphere's matter (electrons, protons, hydrogen, and helium) also contributes to light bending through refraction. The key to determining the dominant effect lies in calculating the gravitational deflection based on the star's mass and comparing it to actual measurements. If the measured deflection exceeds the calculated gravitational deflection, refraction is the dominant factor.

PREREQUISITES
  • Understanding of gravitational lensing principles
  • Knowledge of optical refraction and dispersion
  • Familiarity with the composition of stellar atmospheres
  • Ability to perform calculations involving mass and distance
NEXT STEPS
  • Research gravitational lensing and its mathematical models
  • Study the principles of optical refraction and how it applies to astrophysics
  • Examine the composition and density variations in stellar atmospheres
  • Learn about methods for measuring light deflection in astrophysical contexts
USEFUL FOR

Astronomers, astrophysicists, and students of relativity and optics who are interested in understanding the interactions of light with massive celestial bodies and their atmospheres.

Buckeye
Messages
164
Reaction score
2
How can we decide which process is causing light to bend near the surface of a star? Gravity is said to cause light to bend or deflect as it passes near the huge mass of a star. But matter in the troposphere of a star should also cause light to bend or deflect as it passes through the troposphere of the star because there should be a lot of matter (electrons, protons, H and He) in the troposphere of a star. How do I decide which is the dominant effect?
 
Physics news on Phys.org
I am new to relativity and you should consider some expert opinion than mine, but as this question is more of optics, let me take a chance. I will only say about the refraction point of view.

As refraction depends upon the refractive index of the material (which depends upon wavelength), light with different wavelengths (all from same distant star) should refract to different extents. Thus, If considerable refraction is taking place at all, the distant star should be seen as images of the star in many different colors. Just like prism separates visible light. Plus, the refractive index back calculated comes out to be near 2, which is not plausible for any gaseous mixture. (There is a paper on arxive regarding this and some refraction point of view for black holes).

Again, don't depend upon my point of view.
 
Last edited:
Correct, refraction depends on the wavelength of the light (this is called dispersion), whereas gravitational bending doesn't. Also, gravitational bending of radio waves by the sun, from pulsars or some such thing, has been studied at large angles from the sun (as seen from the earth) where the sun's atmosphere would not be involved at all.
 
Buckeye said:
How can we decide which process is causing light to bend near the surface of a star? Gravity is said to cause light to bend or deflect as it passes near the huge mass of a star. But matter in the troposphere of a star should also cause light to bend or deflect as it passes through the troposphere of the star because there should be a lot of matter (electrons, protons, H and He) in the troposphere of a star. How do I decide which is the dominant effect?

It can be done if you have the mass of the star, and a measurement of the deflection at some known distance from the star.

Calculate the gravitational deflection for the known mass and distance, and compare it to the actual measured deflection. If they're nearly equal, then gravity is the dominant effect. If the measurement is considerably larger than the calculation, then refraction dominates.

p.s. While a calculation of the refractive part is possible in principle, it would require detailed knowledge of the atmosphere's density and composition as a function of altitude above the surface.
 
jtbell said:
...(as seen from the earth) where the sun's atmosphere would not be involved at all.
Sun's atmosphere extends to Earth and even beyond (Encyclopedia Britannica: "Corona"), not that it makes any difference though, as It won't achieve the necessary refractive index!
 

Similar threads

Replies
1
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
5K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K