I have been seeing interference and diffraction problems involving the double slit and single slit equations that ask for things like the "highest order maxima" or minima, which I have learned are basically found by setting the angle to 90 degrees. My question is are there any real world...
In the thought experiment proposed by Heisenberg, a single photon is scattered by the electron that we want to observe, and entering the microscope lens (the photon), it will create a diffraction pattern that gives the uncertainty on the position according to the law of optics. I wanted to ask...
This is not for a homework or anything, I'm just a curious person who was wondering... that: how small is the smallest hole in an opaque material that would still allow to see the "world beyond it", using your eye or any kind of existing or prospective technology?
(English is not my mother...
For a physics project, I'm planning to investigate the relationship between the number of slits in a diffraction grating and the intensity of the central maxima. The light meter which I'm planning to use to measure the intensity gives me a result in LUX.
I know the wavelength of the red laser...
I observed a strange optical phenomenon when lighting a candle in front of a tv screen, in the dark (attached picture). There seems to be two lines forming an 'X' figure with a colored pattern (of diffraction, I suppose). I think it must be related to the material structure of the TV screen...
I explained that Huygens principle states that each point on the wave front act as a point source which produces spherical waves which produce the interference pattern.
Now his question is that where are these points and wouldn't there be infinite number of points on each wave front creating...
From what I understand, if the two-slit experiment is performed while observing a slit for particles, two distinct bands appear rather than interfering. This is a little confusing, as, from what I understand, diffraction is caused by measuring a particle's position (i.e. using a slit to narrow...
I have been preparing for a physics practical on diffraction. More specifically, we will use a CD as a transmission grating (by peeling off the reflective layer), and measure the distance between the fringes for a specific distance between the CD and the viewing wall. However, it is unclear...
For my High School Physics course, I have been tasked to design an experiment investigating the properties of a CD diffraction grating, and we MUST make a graph. Unfortunately, we only have two lasers of different wavelength, so changing the wavelength and measuring ##theta## would be a bad...
Recently, I started to experiment with a laser and a coin used as a lens, being inspired by an old Cody's Lab video. My initial assumption was that through diffraction, the laser will be focused onto a spot on when the coin is a certain distance away from the wall. In a way, I imagined it as an...
I am trying to make a spectrometer. At the moment, I have an optical setup consisting of a laser, diffraction grating and a screen/detector in a straight line. I am trying to understand how to estimate the location of the diffraction pattern of the slit on the screen? Is it the same location on...
In the picture a CD is held in front of a ruler. The light source is an ordinary lamp. You can see a shadow of the CD on the ruler. Remarkable is the shadow on the screen behind it, because you can see that the CD is fully visible and the ruler bulges instead.
Does anyone know this optical...
If I am given the width of the slit (b), wavelength of the light (λ), and the distance of the slit from the screen (D), how can I find the width of the central maximum (d)? My book says d/2=Dλ/b, but with no explanation and I don't understand why. Where does this formula come from?
Thank you...
In https://www.sciencedirect.com/science/article/pii/S0378437109010401, the author claims that the interference pattern obtained in the double-slit experiment does not need a wave description of matter, and can be accounted for by the "quantized momentum transfer" from the slits to the electron...
I know the textbook definitions and descriptions of the phenomenon, but I'm hoping for a fundamental WHY.
I can see that when a water wave passes an obstacle, the wave spreads out into that object's shadow because the wave's energy is not constrained to any direction and so it will move out in...
Hello!
I'm very interested in knowing your opinion on how close my model is to the Fresnel Diffraction by an opaque barrier, as seen here:
http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/difopa.html#c1
My model:
Sorry for the low quality image.
Hi.
The angular resolution is calculated through
$$\theta=1.22\frac{\lambda}{D}\enspace.$$
It's the first zero of the intensity function (in small-angle approximation) of the Airy disk...
when a single photon is supposed to form a diffraction pattern, they hit the detector by different angles at the slit.
so then what cancels this photon's momentum change? what happens to the photon's energy/frequency?what measurements has been done to confirm the answer?
Homework Statement
In picture, first-order reflection from the reflection planes shown occurs when an x-ray beam of wavelength ##0.260 nm## makes an angle ##\theta=63.8°## with the top face of the crystal. What is the unit cell size ##a_0##?
Homework Equations
Bragg law
$$d=\frac{ n...
I've recently come across this problem:
Answer true or false. If light shines through 2 slits, will the diffraction pattern always be within the interference pattern.
I don't understand this question, however. How can the interference and diffraction pattern be separated in this situation...
Hey, I am currently busy with studying solid state physics and looking at diffraction theory. Following link explains Frauenhofer diffraction pretty good: http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/mulslid.html#c3
Let's assume a N=6 multiple slits. Its diffraction pattern depends on slit...
Homework Statement
Homework Equations
Path difference is nλ at maxima, (n+0.5)λ at minima
The Attempt at a Solution
I think the phase difference between S1 and S2 is not 0 anymore, because the wave effectively takes a longer distance by going through S2. Thus, there is no longer a central...
Homework Statement
Suppose you wanted to be able to see astronauts on the moon. What is the smallest diameter of the objective lens required to resolve a 0.60 m object on the moon? Assme the wavelength of the light is near the middle of the visible spectrum: 550 nm yellow light.
(in m)
A...
Homework Statement
Two slits (of width ##a=39 \mu m##) are lighted up with a monocromatic wave of ##\lambda=632,8 nm##. The distance between slits and the screen id ##D=4 m##. The distance between the slits id ##d=195 \mu m##.
In front of the slits there are a convergent lens with focal lenght...
Hi all,
I'm trying to simulate the Fresnel diffraction by using this expersion :
$$ A(x')=\frac{1}{j\lambda z}e^{jk(z+\frac{x'^2}{2z})}F(A^{trans}(x)e^{jk\frac{x^2}{2z}})_{u=\frac{x'}{\lambda z}} $$
So when I use this formula my problem is that I don't know how to take the good frequency, here...
Homework Statement
If a green laser is (wavelength = 532nm) sent through two slits with a separation of 127 um, how wide (in total) would the 11 green dots formed be if they were projected onto a screen 1.25m away from the slits?
Refer to this diagram sorry for bad quality...
Homework Statement
The Attempt at a Solution
Hi All,
I have two issues with this question. First of all when I put the given values into the Bragg condition for diffraction I get two different wavelengths when the question implies there is only one. Secondly, I don't know how I can...