Greatest common divisor of polynomials

Click For Summary
SUMMARY

The greatest common divisor (gcd) of the polynomials \(x^4 + 1\) and \(x^2 + x + 1\) is determined through the Euclidean algorithm. Initially, the user calculated \(gcd(x^4 + 1, x^2 + x + 1) = x + 1\), but upon completing the algorithm, it was confirmed that the correct gcd is \(1\). In the context of integer modulo 2 polynomials, the gcd changes to \(1 + x + x^2\), highlighting the importance of the polynomial's domain in determining the gcd.

PREREQUISITES
  • Understanding of the Euclidean algorithm for polynomials
  • Familiarity with polynomial factorization
  • Knowledge of polynomial domains, specifically integer modulo 2
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the complete Euclidean algorithm for polynomials
  • Explore polynomial factorization techniques in different domains
  • Learn about gcd properties in modular arithmetic
  • Investigate the implications of polynomial irreducibility
USEFUL FOR

Mathematicians, computer scientists, and students studying algebra, particularly those interested in polynomial theory and computational methods for finding greatest common divisors.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! :cool:

I want to find the greatest common divisor of $x^4+1$ and $x^2+x+1$.
I applied the Euclidean division and found that $x^4+1=(x^2+x+1) \cdot (x^2-x)+(x+1)$.
So,isn't it like that: $gcd(x^4+1,x^2+x+1)=x+1$ ?
But.. in my textbook,the result is $1$! Which of the both results is right?? (Blush) :confused: (Thinking)
 
Physics news on Phys.org
You did not finish the Euclidean algorithm, which consists of several Euclidean divisions.
 
Evgeny.Makarov said:
You did not finish the Euclidean algorithm, which consists of several Euclidean divisions.

Oh,yes!You are right! (Giggle) I found now that the greatest common divisor is equal to $1$! Thank you! :)
 
evinda said:
Hello! :cool:

I want to find the greatest common divisor of $x^4+1$ and $x^2+x+1$.
I applied the Euclidean division and found that $x^4+1=(x^2+x+1) \cdot (x^2-x)+(x+1)$.
So,isn't it like that: $gcd(x^4+1,x^2+x+1)=x+1$ ?
But.. in my textbook,the result is $1$! Which of the both results is right?? (Blush) :confused: (Thinking)

If they are 'ordinary polynomials' then their factorisations are...

$\displaystyle 1 + x^{4} = (x - e^{i\ \frac{\pi}{4}})\ (x - e^{- i\ \frac{\pi}{4}})\ (x - e^{i\ \frac{3\ \pi}{4}})\ (x - e^{- i\ \frac{3\ \pi}{4}})$

$\displaystyle 1 + x + x^{2} = (x - e^{i\ \frac{2\ \pi}{3}})\ (x - e^{- i\ \frac{2\ \pi}{3}})$

... and the two polynomial have no common factors so that the g.c.d. is 1.

If they are 'integer modulo 2 polynomials' however then their factorisations are...$\displaystyle 1 + x^{4} = (1 + x)\ (1 + x)\ (1 + x + x^{2})$$\displaystyle 1 + x + x^{2} = 1 + x + x^{2}$ ... so that the g.c.d. is $\displaystyle 1 + x + x^{2}$...

Kind regards $\chi$ $\sigma$
 

Similar threads

  • · Replies 24 ·
Replies
24
Views
983
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K