Grounding of secondary side transformer

AI Thread Summary
Grounding the secondary side of a transformer affects current flow and circuit protection. In the case of an earth fault, grounding at L2 results in equal voltage across the secondary windings, preventing current flow. Conversely, grounding at L1 can allow current to bypass protective measures, potentially starting a motor without blowing a fuse. The discussion highlights the importance of proper relay placement to avoid undetected faults that could lead to overload conditions. Understanding these grounding scenarios is crucial for safe electrical system design.
wv123456789
Messages
1
Reaction score
0
TL;DR Summary
Grounding of secondary side of transformer
Hello,

I am a mech engineer teaching myself electrical engineering so please forgive my ignorance. Could someone explain to me how the coil stays open when grounded in the figure 2-12b.

With my limited understanding I can see that in 2-13a the if the side of the circuit on the left of the coil contacted ground (earth fault) then because of grounding at L2 both sides of the secondary windings would be at the same voltage so no current. In 2-13b grounding at L1 means that because of the Earth fault ground is now hot, current would pass through grounding at L1, bypassing the stop and into the coil? Is that correct?

many thanks,

will

1660805387097.png
 
Engineering news on Phys.org
Welcome to PF.
In (a), grounding any point between L1 and the motor, would blow the fuse.
In (b), grounding any point between L1 and the motor, could start the motor without blowing the fuse.
 
Figure 2-13A is not ideal either. Overload relay labeled OL should not be in the low side. A fault to ground between M and OL can exist for years without anyone realizing it until one day due to an overload condition on the motor causes the overload relay to trip and it has been bypassed due to an undetected fault between M and OL.
 
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top