Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Group Normalcy not transitive example?

  1. May 10, 2016 #1
    The normal subgroup of a normal subgroup need not be normal in the original group (normalcy is not transitive). Could somebody provide me with an example of where this is the case? Thanks :D
  2. jcsd
  3. May 10, 2016 #2


    User Avatar
    Science Advisor
    Homework Helper

    what examples have you tried? there should be some rather small suitable ones available.
  4. May 10, 2016 #3


    Staff: Mentor

    Think of small symmetry groups or subgroups of them.
  5. May 12, 2016 #4
    Small symmetry groups.... Is the Alternating symmetry group (A_n) always simple in S_n? If not that's the route i'm going to go.... It's always normal because the index in S_n is always going to be two obviously... Anyway if I find a normal subgroup of some A_n maybe it won't be normal in S_n? Do you think this is a smart route to take?
  6. May 12, 2016 #5


    Staff: Mentor

    They are simple for ##n > 4## (and three). "Simple in" is a bit of a weird wording.
    If you consider a whole symmetric group it might be more difficult to prove because you have an additional transposition at hand to get closure under conjugation.
  7. May 12, 2016 #6
    Ahh good point, my teacher had so engraved into me to make sure to say when a subgroup is normal it's very important to say what group it's normal inside of, but being simple is independent of that of course, good catch.

    So don't consider the whole symmetric group? What do you mean i'll have an additional transposition? an additional transposition compared to the alternating group? I haven't spent a whole lot of time tinkering around with the inner workings of the symmetric group, are there certain elements in most or all symmetric groups that are often times an obvious normal subgroup that I could look for non-transitive normal subgroups of?
  8. May 12, 2016 #7


    Staff: Mentor

    It's almost everything said already. Since the alternating groups ##A_5, A_6, ...## are all simple they won't help you. Abelian groups won't help you either. So to stay with small groups there is not much choice. My comment on the transposition just meant: With more possible ##g## in ##gNg^{-1} ⊆ N## it's not only more work to do, but also easier for a subgroup to be normal. However, I didn't really think a lot about it.
  9. May 19, 2016 #8


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    As you have observed constructing normal subgroups is not trivial, even in small groups to begin with. But if you have [tex] K\subset H \subset G[/tex] groups, with [tex][G : H] = [H:K] = 2,[/tex] then K is a normal subgroup of H, and H is a normal subgroup of G, and you have a pretty good shot at K not being normal in G. K obviously needs to be non-trivial, so the smallest possible |G| is 8. It turns out that at least one of the two(?) non-abelian groups of order 8 works for this.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted

Similar Discussions: Group Normalcy not transitive example?