Groups of homomorphisms of abelian groups

Hello everybody!
I've just started with studying group homorphisms and tensor products, so i am still not very sure if i undertstand the subject correct. I am stuck with a question and i would ask you for some help or hints how to proceed...

What i have to do is to describe ##Hom(\mathbb{Q}/\mathbb{Z},\mathbb{Q})## and ##Hom(\mathbb{Q},\mathbb{Q}/\mathbb{Z})##. I know that both ##\mathbb{Q}/\mathbb{Z}## and ##\mathbb{Q}## are abelian groups, ##\mathbb{Q}/\mathbb{Z}## as a ##\mathbb{Z}##-module is finitely generated, but ##\mathbb{Q}## as a ##\mathbb{Z}##-module is not finitely generated.
Can anybody help me with this problem? How is it meant "to describe the groups of homomorphisms"?
Thank you in advance!
 

lavinia

Science Advisor
Gold Member
3,060
527
A couple of things that may help
(Since Z is not a group under multiplication, you must be referring to addition)

- Q/Z is a torsion group. That is: every element is of finite order. Q has no elements of finite order.

- Try to find a set of Z generators of Q. Do the reciprocals of the prime numbers work?


BTW: Why do you think Q/Z is a finitely generated Z module?
 
Last edited:

Related Threads for: Groups of homomorphisms of abelian groups

  • Posted
Replies
10
Views
3K
  • Posted
Replies
4
Views
3K
  • Posted
Replies
7
Views
3K
Replies
2
Views
452
Replies
2
Views
6K
  • Posted
Replies
9
Views
1K
Replies
7
Views
1K
  • Posted
Replies
3
Views
2K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top