I Hall Conductivity and Rotational Invariance

  • I
  • Thread starter Thread starter thatboi
  • Start date Start date
  • Tags Tags
    Quantum hall effect
thatboi
Messages
130
Reaction score
20
I am reading up on QHE from: https://www.damtp.cam.ac.uk/user/tong/qhe/five.pdf
and am confused about the comment: "The action (5.5) has no Hall conductivity because this is ruled out in d = 3+1 dimensions on rotational grounds." Can someone explain why this is the case? My only guess is that the action in (5.5) contains no linear terms, whereas if we look at the general case in IQHE where have an electric and magnetic field, the Hamiltonian would contain terms linear in the magnetic field and electric field. But I cannot understand why this would necessarily rule out the IQHE?
 
Physics news on Phys.org
Ok, I think the easiest way to see this is to rewrite (5.5) using the Maxwell tensor ##F_{\mu\nu}^{2} = 2(\partial_{\mu}A_{\nu})^2-2(\partial_{\mu}A_{\mu})^{2}##. Then we note that taking the functional derivative of the Maxwell action with respect to any specific ##A_{\mu}## necessarily evaluates to ##0## so there is no Hall Conductivity.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top