MHB Hello's question at Yahoo Answers regarding proving a trigonometric identity

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Solving Trig Identity?


sin^4x - cos^4x / sin^3x + cos^3x = sinx - cosx / 1 - sinxcosx

please explain the steps to me?

I have posted a link there to this topic so the OP can see my work,
 
Mathematics news on Phys.org
Hello Hello,

We are given to prove:

$$\frac{\sin^4(x)-\cos^4(x)}{\sin^3(x)+\cos^3(x)}=\frac{\sin(x)-\cos(x)}{1-\sin(x)\cos(x)}$$

Traditionally, we begin with the left side and try to apply well-known algebraic formulas and trigonometric identities to obtain the right side. So let's look at the left side:

$$\frac{\sin^4(x)-\cos^4(x)}{\sin^3(x)+\cos^3(x)}$$

Now, it we factor the numerator as the difference of squares, and the denominator as the sum of cubes, we may write:

i) Difference of squares:

$$a^2-b^2=(a+b)(a-b)$$

ii) Sum of cubes:

$$a^3+b^3=(a+b)\left(a^2-ab+b^2 \right)$$

$$\frac{\sin^4(x)-\cos^4(x)}{\sin^3(x)+\cos^3(x)}=\frac{\left(\sin^2(x)+\cos^2(x) \right)\left(\sin^2(x)-\cos^2(x) \right)}{\left(\sin(x)+\cos(x) \right)\left(\sin^2(x)-\sin(x)\cos(x)+\cos^2(x) \right)}$$

Applying the Pythagorean identity $$\sin^2(\theta)+\cos^2(\theta)=1$$ we have:

$$\frac{\sin^4(x)-\cos^4(x)}{\sin^3(x)+\cos^3(x)}=\frac{\sin^2(x)-\cos^2(x)}{\left(\sin(x)+\cos(x) \right)\left(1-\sin(x)\cos(x) \right)}$$

Factoring the numerator as the difference of squares, we find:

$$\frac{\sin^4(x)-\cos^4(x)}{\sin^3(x)+\cos^3(x)}=\frac{\left(\sin(x)+\cos(x) \right)\left(\sin(x)-\cos(x) \right)}{\left(\sin(x)+\cos(x) \right)\left(1-\sin(x)\cos(x) \right)}$$

Dividing out common factors, we see:

$$\frac{\sin^4(x)-\cos^4(x)}{\sin^3(x)+\cos^3(x)}= \frac{\cancel{\left(\sin(x)+\cos(x) \right)} \left(\sin(x)-\cos(x) \right)}{\cancel{\left(\sin(x)+ \cos(x) \right)}\left(1-\sin(x)\cos(x) \right)}$$

$$\frac{\sin^4(x)-\cos^4(x)}{\sin^3(x)+\cos^3(x)}=\frac{\sin(x)-\cos(x)}{1-\sin(x)\cos(x)}$$

Shown as desired.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top