MHB Help? Algebra 2 Math - Solve X,Y,Z

  • Thread starter Thread starter adridgarcia
  • Start date Start date
  • Tags Tags
    Algebra Algebra 2
AI Thread Summary
The discussion focuses on solving a word problem involving three numbers whose sum is 95, with specific relationships between them. The equations derived are \( x + y + z = 95 \), \( y = x + 5 \), and \( z = 3y \). Using substitution, the values of the numbers are calculated as \( x = 15 \), \( y = 20 \), and \( z = 60 \). The solution process includes combining like terms and isolating variables to find the final answers. The thread concludes with a light-hearted remark about the addictive nature of seeking help.
adridgarcia
Messages
1
Reaction score
0
The sum of three numbers is 95. The second number is 5 more than the first. The third number is 3 times the second. What are the numbers?
 
Mathematics news on Phys.org
Begin by turning the word problem into a system of equations:

Let \( x + y + z = 95 \), \( y = x + 5 \), and \( z = 3y \).

You can now use Elimination, Substitution, or Matrices to solve. I will use substitution by taking the 2nd and 3rd equations and getting the 1st equation in terms of \( y \).

\( y = x+ 5 \) subtract \( 5 \) from both sides.
\( x = y - 5 \)

Substitute \( x = y - 5 \) and \( z = 3y \) into \( x + y + z = 95 \):

\( ( y -5 ) + y + (3y) = 95 \) combine like terms
\( 5y - 5 = 95 \) add \( 5 \) to both sides
\( 5y = 100 \) divide by \( 5 \) on both sides
\( y = 20 \)

Substitute \( y = 20 \) into \( x = y - 5 \):
\( x = (20) - 5 \) simplify
\( x = 15 \)

Substitute \( y = 20 \) into \( z = 3y \):
\( z = 3(20) \) simplify
\( z = 60 \)

ANSWER: \( x = 15 \), \( y = 20 \), and \( z = 60 \)
 
Beer soaked comment follows.
SquareOne said:
Begin by turning the word problem into a system of equations:

Let \( x + y + z = 95 \), \( y = x + 5 \), and \( z = 3y \).

You can now use Elimination, Substitution, or Matrices to solve. I will use substitution by taking the 2nd and 3rd equations and getting the 1st equation in terms of \( y \).

\( y = x+ 5 \) subtract \( 5 \) from both sides.
\( x = y - 5 \)

Substitute \( x = y - 5 \) and \( z = 3y \) into \( x + y + z = 95 \):

\( ( y -5 ) + y + (3y) = 95 \) combine like terms
\( 5y - 5 = 95 \) add \( 5 \) to both sides
\( 5y = 100 \) divide by \( 5 \) on both sides
\( y = 20 \)

Substitute \( y = 20 \) into \( x = y - 5 \):
\( x = (20) - 5 \) simplify
\( x = 15 \)

Substitute \( y = 20 \) into \( z = 3y \):
\( z = 3(20) \) simplify
\( z = 60 \)

ANSWER: \( x = 15 \), \( y = 20 \), and \( z = 60 \)
Prepare thyself for more questions.
Spoon feeding can be very addictive.
 
jonah said:
Prepare thyself for more questions.
Spoon feeding can be very addictive.
Spoon feeding can be very "additive." (Dance)

-Dan
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
7
Views
2K
Replies
22
Views
2K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
10
Views
1K
Back
Top