MHB Help with another separable equation

  • Thread starter Thread starter jahrens
  • Start date Start date
  • Tags Tags
    Separable
jahrens
Messages
4
Reaction score
0
I am really struggling with this one, if anyone can help. (ln(y))3*(dy/dx)=(x^3)y with initial conditions y=e^2 x=1

I get c=4/(e^4) - 1/4
then I get stuck at (3ln^2y - ln^3y)/(y^2)=(x^4)/4 + C Any ideas? I'm really not good at these so there are probably mistakes, because at this point I have no idea how to isolate y.
 
Physics news on Phys.org
jahrens said:
I am really struggling with this one, if anyone can help. (ln(y))3*(dy/dx)=(x^3)y with initial conditions y=e^2 x=1

I get c=4/(e^4) - 1/4
then I get stuck at (3ln^2y - ln^3y)/(y^2)=(x^4)/4 + C Any ideas? I'm really not good at these so there are probably mistakes, because at this point I have no idea how to isolate y.

Is the DE $\displaystyle \begin{align*} \left[ \ln{(y)} \right] ^3\,\frac{\mathrm{d}y}{\mathrm{d}x} = x^3\,y \end{align*}$?
 
Yes!
 
$\displaystyle \begin{align*} \left[ \ln{(y)} \right] ^3\,\frac{\mathrm{d}y}{\mathrm{d}x} &= x^3\,y \\ \left[ \ln{(y)} \right] ^3\,\frac{1}{y}\,\frac{\mathrm{d}y}{\mathrm{d}x} &= x^3 \\ \int{ \left[ \ln{(y)} \right] ^3\,\frac{1}{y}\,\frac{\mathrm{d}y}{\mathrm{d}x} \,\mathrm{d}x} &= \int{ x^3\,\mathrm{d}x} \\ \int{ \left[ \ln{(y)} \right] ^3\,\frac{1}{y}\,\mathrm{d}y} &= \frac{x^4}{4} + C_1 \\ \int{ u^3\,\mathrm{d}u} &= \frac{x^4}{4} + C_1 \textrm{ where } u = \ln{(y)} \implies \mathrm{d}u = \frac{1}{y}\,\mathrm{d}y \\ \frac{u^4}{4} + C_2 &= \frac{x^4}{4} + C_1 \\ \frac{u^4}{4} &= \frac{x^4}{4} + C_1 - C_2 \\ u^4 &= x^4 + 4\,C_1 - 4\,C_2 \\ \left[ \ln{(y)} \right] ^4 &= x^4 + C \textrm{ where } C = 4\,C_1 - 4\,C_2 \\ \ln{(y)} &= \pm \sqrt[4]{ x^4 + C } \\ y &= \mathrm{e}^{ \pm \sqrt[4]{x^4 + C} } \end{align*}$

Now since when $\displaystyle \begin{align*} x = 1, \, y = \mathrm{e}^2 \end{align*}$ we have

$\displaystyle \begin{align*} \mathrm{e}^2 &= \mathrm{e}^{ \pm \sqrt[4]{ 1^4 + C } } \\ 2 &= \pm \sqrt[4]{ 1 + C } \\ 16 &= 1 + C \\ C &= 15 \end{align*}$

and thus $\displaystyle \begin{align*} y = \mathrm{e}^{\pm \sqrt{ x^4 + 15 }} \end{align*}$.
 
Is there anywhere in the problem that says you are actually required to solve for y?
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top