Help with another separable equation

  • Context: MHB 
  • Thread starter Thread starter jahrens
  • Start date Start date
  • Tags Tags
    Separable
Click For Summary
SUMMARY

The discussion focuses on solving the separable differential equation (ln(y))^3*(dy/dx) = (x^3)y with the initial condition y = e^2 when x = 1. The user successfully determines the constant C as 15, leading to the solution y = e^(±√(x^4 + 15)). The conversation highlights the steps involved in integrating the equation and isolating y, confirming the validity of the derived solution.

PREREQUISITES
  • Understanding of separable differential equations
  • Knowledge of integration techniques, particularly for logarithmic functions
  • Familiarity with initial value problems in differential equations
  • Basic algebraic manipulation skills for isolating variables
NEXT STEPS
  • Study advanced integration techniques for differential equations
  • Learn about initial value problems and their applications in real-world scenarios
  • Explore the properties of logarithmic functions in calculus
  • Investigate numerical methods for solving differential equations
USEFUL FOR

Students and professionals in mathematics, particularly those studying differential equations, as well as educators looking for examples of solving separable equations.

jahrens
Messages
4
Reaction score
0
I am really struggling with this one, if anyone can help. (ln(y))3*(dy/dx)=(x^3)y with initial conditions y=e^2 x=1

I get c=4/(e^4) - 1/4
then I get stuck at (3ln^2y - ln^3y)/(y^2)=(x^4)/4 + C Any ideas? I'm really not good at these so there are probably mistakes, because at this point I have no idea how to isolate y.
 
Physics news on Phys.org
jahrens said:
I am really struggling with this one, if anyone can help. (ln(y))3*(dy/dx)=(x^3)y with initial conditions y=e^2 x=1

I get c=4/(e^4) - 1/4
then I get stuck at (3ln^2y - ln^3y)/(y^2)=(x^4)/4 + C Any ideas? I'm really not good at these so there are probably mistakes, because at this point I have no idea how to isolate y.

Is the DE $\displaystyle \begin{align*} \left[ \ln{(y)} \right] ^3\,\frac{\mathrm{d}y}{\mathrm{d}x} = x^3\,y \end{align*}$?
 
Yes!
 
$\displaystyle \begin{align*} \left[ \ln{(y)} \right] ^3\,\frac{\mathrm{d}y}{\mathrm{d}x} &= x^3\,y \\ \left[ \ln{(y)} \right] ^3\,\frac{1}{y}\,\frac{\mathrm{d}y}{\mathrm{d}x} &= x^3 \\ \int{ \left[ \ln{(y)} \right] ^3\,\frac{1}{y}\,\frac{\mathrm{d}y}{\mathrm{d}x} \,\mathrm{d}x} &= \int{ x^3\,\mathrm{d}x} \\ \int{ \left[ \ln{(y)} \right] ^3\,\frac{1}{y}\,\mathrm{d}y} &= \frac{x^4}{4} + C_1 \\ \int{ u^3\,\mathrm{d}u} &= \frac{x^4}{4} + C_1 \textrm{ where } u = \ln{(y)} \implies \mathrm{d}u = \frac{1}{y}\,\mathrm{d}y \\ \frac{u^4}{4} + C_2 &= \frac{x^4}{4} + C_1 \\ \frac{u^4}{4} &= \frac{x^4}{4} + C_1 - C_2 \\ u^4 &= x^4 + 4\,C_1 - 4\,C_2 \\ \left[ \ln{(y)} \right] ^4 &= x^4 + C \textrm{ where } C = 4\,C_1 - 4\,C_2 \\ \ln{(y)} &= \pm \sqrt[4]{ x^4 + C } \\ y &= \mathrm{e}^{ \pm \sqrt[4]{x^4 + C} } \end{align*}$

Now since when $\displaystyle \begin{align*} x = 1, \, y = \mathrm{e}^2 \end{align*}$ we have

$\displaystyle \begin{align*} \mathrm{e}^2 &= \mathrm{e}^{ \pm \sqrt[4]{ 1^4 + C } } \\ 2 &= \pm \sqrt[4]{ 1 + C } \\ 16 &= 1 + C \\ C &= 15 \end{align*}$

and thus $\displaystyle \begin{align*} y = \mathrm{e}^{\pm \sqrt{ x^4 + 15 }} \end{align*}$.
 
Is there anywhere in the problem that says you are actually required to solve for y?
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K