Help with Geometry: Volume, Area and Perimeter of Pyramid

Click For Summary
SUMMARY

The discussion focuses on calculating the perimeter, volume, and surface area of a pyramid with a square base and slanted edges of 5 cm. The perimeter is determined to be 40 cm, calculated as 4 times the side length of the base. The surface area consists of the area of the base (25 cm²) and the area of four equilateral triangles (25√3 cm²), resulting in a total surface area of (25√3 + 25) cm². The volume is calculated using the formula V = (1/3) * base area * height, yielding a volume of (125/3√2) cm³.

PREREQUISITES
  • Understanding of geometric shapes, specifically pyramids
  • Knowledge of perimeter, area, and volume formulas
  • Familiarity with the properties of equilateral triangles
  • Ability to apply the Pythagorean theorem
NEXT STEPS
  • Study the formulas for the volume and surface area of different types of pyramids
  • Learn how to derive the height of a pyramid using the Pythagorean theorem
  • Explore the properties of equilateral triangles and their applications in geometry
  • Practice solving geometry problems involving 3D shapes
USEFUL FOR

Students preparing for geometry exams, educators teaching geometric concepts, and anyone interested in mastering calculations related to pyramids and other 3D shapes.

beh4R
Messages
3
Reaction score
0
Hello .
I am in the end of my exams and i have to do a geometry figure like a pyramid ( view image ) below
Now i should find the Perimeter, Volume and Surface of this figure .
Lengths are all 5 cm, Can somebody find and write the
Permiter,volume and surface for this figure please it's urgent :confused: :confused:
3310toz.jpg
 
Mathematics news on Phys.org
beh4R said:
Hello .
I am in the end of my exams and i have to do a geometry figure like a pyramid ( view image ) below
Now i should find the Perimeter, Volume and Surface of this figure .
Lengths are all 5 cm, Can somebody find and write the
Permiter,volume and surface for this figure please it's urgent :confused: :confused:

Good morning,

I've to do a lot of guessing, so if I guessed correctly you can finish the problem, otherwise you have to provide us with additional detailed informations:

1. I assume that the figure shows a sector of a circle. If so the figure is the curved surface of a cone with the slanted line s = 5 cm and the arc a = 5 cm.
2. The area $$A_s$$ of a sector is calculated by: $$A_s = \frac12 \cdot a \cdot s$$
3. The arc of the sector is the circumference of the base circle of the cone. You can determine the radius r of the base circle by: $$a = 2 \pi \cdot r$$
4. The volume of a cone is calculated by: $$V = \frac13 \cdot \pi \cdot r^2 \cdot h$$
where h denotes the height of the cone.
5. Use Pythagorean theorem to derive h from r and s.

I'll leave it to you to calculate the complete surface area of the cone.

... and btw I couldn't imagine what a perimeter of a solid could be? :confused:
 

Attachments

  • keglmantl.png
    keglmantl.png
    7.4 KB · Views: 131
Hello, beh4R!

I am in the end of my exams and i have to do a geometry
figure like a pyramid. .All lengths are 5 cm.

Find the perimeter, volume, and surface area.

Code:
            *
           * * * 5
        5 *   *   *
         *     *     *
        *       *   *
       *         * * 5
      *  *  *  *  *
            5
I assume this is a pyramid with a square base.There are four slanted edges of length 5.
The base is a square with side 5.
The perimeter is: 4\cdot5 + 4\cdot 5 \:=\:40\:cm.

There are four equilateral triangles with side 5.
. . Their area is: 4\cdot\tfrac{\sqrt{3}}{4}(5^2) \,=\,25\sqrt{3}\,cm^2
The base is a square with side 5.
. . Its area is 5^2\,=\,25\,cm^2
Surface area: .(25\sqrt{3} + 25)\,cm^2

Slice the pyramid through two opposite slanted sides.
Code:
            *
        5 * : * 5
        *   :   *
      *  *  *_ *  *
           5√2
We have an isosceles right triangle.
Its height is \tfrac{5}{\sqrt{2}}\,cm.

Volume: .\tfrac{1}{3}(5^2)\left(\tfrac{5}{\sqrt{2}}\right) \:=\:\frac{125}{3\sqrt{2}}\,cm^3
 
soroban said:
Hello, beh4R!


I assume this is a pyramid with a square base.There are four slanted edges of length 5.
The base is a square with side 5.
The perimeter is: 4\cdot5 + 4\cdot 5 \:=\:40\:cm.

There are four equilateral triangles with side 5.
. . Their area is: 4\cdot\tfrac{\sqrt{3}}{4}(5^2) \,=\,25\sqrt{3}\,cm^2
The base is a square with side 5.
. . Its area is 5^2\,=\,25\,cm^2
Surface area: .(25\sqrt{3} + 25)\,cm^2

Slice the pyramid through two opposite slanted sides.
Code:
            *
        5 * : * 5
        *   :   *
      *  *  *_ *  *
           5√2
We have an isosceles right triangle.
Its height is \tfrac{5}{\sqrt{2}}\,cm.

Volume: .\tfrac{1}{3}(5^2)\left(\tfrac{5}{\sqrt{2}}\right) \:=\:\frac{125}{3\sqrt{2}}\,cm^3
ok thnaks so much i will write this in my notebook . hope its correct and to not remain in exam :) God bless you (Inlove)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K