Help with this double sampling scheme problem

  • Context: MHB 
  • Thread starter Thread starter statrw
  • Start date Start date
  • Tags Tags
    Sampling
Click For Summary
SUMMARY

The discussion focuses on calculating the probability of having at least 8 tightly packed items in a combined sample of 10 from a food production process, where 80% of items are tightly packed. The initial sample consists of 5 items, and a second sample is taken if the first sample does not meet acceptance criteria. The probability is derived using binomial distributions, specifically \(b(n;N,x)\), which represents the binomial probability of achieving \(n\) successes in \(N\) trials with a success probability of \(x\). The correct approach involves considering various combinations of tightly packed items from both samples to achieve the desired total.

PREREQUISITES
  • Understanding of binomial probability distributions
  • Familiarity with sampling techniques in quality control
  • Knowledge of probability theory, specifically combinatorial analysis
  • Ability to interpret statistical notation and formulas
NEXT STEPS
  • Study binomial probability calculations using \(b(n;N,x)\)
  • Learn about quality control sampling methods in production processes
  • Explore combinatorial analysis techniques for probability problems
  • Review statistical methods for decision-making based on sample data
USEFUL FOR

Statisticians, quality control analysts, production managers, and anyone involved in sampling and probability calculations in manufacturing processes.

statrw
Messages
3
Reaction score
0
Please help with a hint of doing his question, I have drawn the diagram but still confused.


Q)In a food production process, packaged items are sampled as they come off a
production line. A random sample of 5 items from each large production batch is
checked to see whether each item is tightly packed. A batch will be accepted
immediately if all of these 5 items are tightly packed, and rejected immediately if at
least 3 items among the 5 are not tightly packed. Otherwise a second sample is taken
before making a decision.
Suppose that 80% of the items produced by the machine are tightly packed

a)When a second sample is to be taken, it also consists of 5 items. What is the
probability that in a combined sample of 10 items there are at least 8 tightly
packed?

Thanks.
 
Physics news on Phys.org
statrw said:
Please help with a hint of doing his question, I have drawn the diagram but still confused.


Q)In a food production process, packaged items are sampled as they come off a
production line. A random sample of 5 items from each large production batch is
checked to see whether each item is tightly packed. A batch will be accepted
immediately if all of these 5 items are tightly packed, and rejected immediately if at
least 3 items among the 5 are not tightly packed. Otherwise a second sample is taken
before making a decision.
Suppose that 80% of the items produced by the machine are tightly packed

a)When a second sample is to be taken, it also consists of 5 items. What is the
probability that in a combined sample of 10 items there are at least 8 tightly
packed?

Thanks.

When a second sample is taken there are 3 or 4 tightly packed items in the first sample, so for at least 8 to be tightly packed we need 4 or 5 to be tightly packed in the second sample if only one was not tightly packed in the first sample and 5 if two were not tightly packed, so the required probability is:

\(p = (b(4;5,0.8) + b(5;5,0.8)) \times b(4;5,0.8) + b(5;5,0.8) \times b(3;5,0.8)\)

where \(b(n;N,x)\) denotes the binomial probability on \(n\) successes in \(N\) trials with a success probability of \(x\) in each trial.

CB
 
Last edited:
CaptainBlack said:
When a second sample is taken there are 4 tightly packed items in the first sample, so for at least 8 to be tightly packed we need 4 or 5 to be tightly packed in the second sample, so the required probability is:

p = b(4;5,0.8) + b(5;5,0.8)

where b(n;N,x) denotes the binomial probability on n successes in N trials with a success probability of x in each trial.

CB

Thanks but not sure how you got the 4 or 5 tightly packed to add up to 8. Remember for second sample to be taken there must be 0 or 1 or 2 tightly packed.

I may have missed the point,but could you explain.
Thanks.
 
statrw said:
Thanks but not sure how you got the 4 or 5 tightly packed to add up to 8. Remember for second sample to be taken there must be 0 or 1 or 2 tightly packed.

I may have missed the point,but could you explain.
Thanks.

Sorry, misread the condition for drawing a second sample, previous post has now been corrected.

CB
 
Last edited:
CaptainBlack said:
When a second sample is taken there are 3 or 4 tightly packed items in the first sample, so for at least 8 to be tightly packed we need 4 or 5 to be tightly packed in the second sample if only one was not tightly packed in the first sample and 5 if two were not tightly packed, so the required probability is:

\(p = (b(4;5,0.8) + b(5;5,0.8)) \times b(4;5,0.8) + b(5;5,0.8) \times b(3;5,0.8)\)

where \(b(n;N,x)\) denotes the binomial probability on \(n\) successes in \(N\) trials with a success probability of \(x\) in each trial.

CB

Not sure about your suggestion above, here is what I think, see below.
Any opinions?To get a total of 8 tightly packed from the first and second selection we need to add up binomial probabilities.

1) x =0 from n1 and x=8 from n2
2) x=1 from n1 and x=7 from n2
3) x=2 from n1 and x=6 from n2

For each case use binomial B(5, 0.8), where B(n,p).
 
statrw said:
Not sure about your suggestion above, here is what I think, see below.
Any opinions?To get a total of 8 tightly packed from the first and second selection we need to add up binomial probabilities.

1) x =0 from n1 and x=8 from n2
2) x=1 from n1 and x=7 from n2
3) x=2 from n1 and x=6 from n2

For each case use binomial B(5, 0.8), where B(n,p).

The second sample is of size 5.

CB
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
5K
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 19 ·
Replies
19
Views
7K
  • · Replies 2 ·
Replies
2
Views
1K