A Help with understanding why limit implies uniqueness

MathStudent999
Messages
1
Reaction score
0
TL;DR Summary
I was hoping to find more clarification on uniqueness results for autonomous ODEs
I'm studying ODEs and have understood most of the results of the first chapter of my ODE book, this is still bothers me. Suppose
$$\begin{cases}
f \in \mathcal{C}(\mathbb{R}) \\
\dot{x} = f(x) \\
x(0) = 0 \\
f(0) = 0 \\
\end{cases}.
$$

Then,
$$
\lim_{\varepsilon \searrow 0}\left|\int^\varepsilon_0 {dy \over f(y)}\right| = \infty
$$
implies solutions are unique. Since
$$
\lim_{\varepsilon \searrow 0}\left|\int^\varepsilon_0 {dy \over f(y)}\right|< \infty
$$
allows us to invert to get a solution(more clarification on this) other than 0. So, am I seeing it right that this is just a contrapostive to get uniqueness.
 
Physics news on Phys.org
If the book presents it as you describe, then your concerns are well-founded, as it makes the logical fallacy of "denying the antecedent" (I can't post a link to the wiki page on this locked-down computer), which is erroneously concluding ##\neg P\to \neg Q## from ##P\to Q##.

In this case, ##P## is the inequality in the OP and ##Q## is the claim "there exists more than one solution".

From ##P\to Q## one can conclude ##\neg Q\to\neg P## but one cannot conclude ##\neg P\to\neg Q##. eg consider where ##P## is "Beryl was born in Bulgaria" and ##Q## is "Beryl was born in Europe".
Beryl may have been born in Poland.

I expect there are other arguments that can justify the book's conclusion, but the author didn't notice the logical fallacy of the above, and hence omitted to state them.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top