Hermitian Function Proof: Correcting a Mistake

Click For Summary
SUMMARY

The discussion centers on the proof of a property of Hermitian functions, specifically the equation \(4f(x,y)=q(x+y)-q(x-y)+iq(x+iy)-iq(x-iy)\). The original poster identified a mistake in their calculations, leading to the conclusion that the equation simplifies to zero. However, upon further exploration and the introduction of the concept of Sesquilinear forms, the correct relationship was established, confirming that Hermitian functions in this context are indeed equivalent to Sesquilinear forms with the additional property \(f(v,u)=\overline{f(u,v)}\) for all \(u,v \in V\).

PREREQUISITES
  • Understanding of Hermitian functions and their properties
  • Familiarity with Bilinear and Sesquilinear maps
  • Knowledge of complex vector spaces
  • Basic proficiency in mathematical proofs and manipulations
NEXT STEPS
  • Study the properties of Sesquilinear forms in detail
  • Learn about the implications of Hermitian symmetry in complex vector spaces
  • Explore advanced topics in linear algebra related to bilinear maps
  • Investigate applications of Hermitian functions in quantum mechanics and signal processing
USEFUL FOR

Mathematicians, students of linear algebra, and anyone interested in the properties of complex vector spaces and their applications in theoretical physics.

Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

Here's a problem I encountered. I think there's a mistake in this problem.

Problem:

Let \(f:\,V\times V\rightarrow\mathbb{C}\) be a Hermitian function (a Bilinear Hermitian map), \(q:\, V\rightarrow\mathbb{C}\) be given by \(q(v)=f(v,\,v)\). Prove that following,

\[4f(x,\,y)=q(x+y)-q(x-y)+iq(x+iy)-iq(x-iy)\]

When I find the answer I get,

\[q(x+y)-q(x-y)+iq(x+iy)-iq(x-iy)=0\]

I would be really grateful if someone can confirm my answer. :)
 
Physics news on Phys.org
Sudharaka, here's what I tried:

$$
q(x+y) - q(x-y) +i q(x+iy) -i q(x-iy)
$$

$$
= f(x+y,x+y) - f(x-y,x-y) +if(x+iy, x+iy) - if(x-iy, x-iy)
$$

$$
= f(x,x) + f(x,y) + f(y,x) + f(y,y) - (f(x,x) - f(y,x) - f(x,y ) +f(y,y)) +i(f(x,x) + if(y,x) + if(x,y) + i^2 f(y,y)) -i(f(x,x) -if(y,x) -if(x,y) -i^2f(y,y))
$$

$$
= f(x,y) + f(y,x) + f(x,y) + f(y,x) - f(x,y) - f(y,x) - f(x,y) - f(y,x) = 0.
$$

I searched a bit in Wikipedia and found Sesquilinear forms. If we use this instead, meaning that the function $f$ is antilinear in the second coordinate, we'd get this on the third line instead:

$$
= f(x,x) + f(x,y) + f(y,x) + f(y,y) - (f(x,x) - f(y,x) - f(x,y) +f(y,y)) +i(f(x,x) + if(y,x) - if(x,y) - i^2 f(y,y)) -i(f(x,x) -if(y,x) +if(x,y) -i^2f(y,y))
$$

$$=f(x,y) +f(y,x) +f(y,x) +f(x,y) -f(y,x) +f(x,y) -f(y,x) +f(x,y) = 4f(x,y).$$

Just as asked. Possibly what he meant as Hermitian function is really the Sesquilinear?
 
Fantini said:
Possibly what he meant as Hermitian function is really the Sesquilinear?
In the context of a vector space over the complex numbers, Hermitian always means sesquilinear.
 
Fantini said:
Sudharaka, here's what I tried:

$$
q(x+y) - q(x-y) +i q(x+iy) -i q(x-iy)
$$

$$
= f(x+y,x+y) - f(x-y,x-y) +if(x+iy, x+iy) - if(x-iy, x-iy)
$$

$$
= f(x,x) + f(x,y) + f(y,x) + f(y,y) - (f(x,x) - f(y,x) - f(x,y ) +f(y,y)) +i(f(x,x) + if(y,x) + if(x,y) + i^2 f(y,y)) -i(f(x,x) -if(y,x) -if(x,y) -i^2f(y,y))
$$

$$
= f(x,y) + f(y,x) + f(x,y) + f(y,x) - f(x,y) - f(y,x) - f(x,y) - f(y,x) = 0.
$$

I searched a bit in Wikipedia and found Sesquilinear forms. If we use this instead, meaning that the function $f$ is antilinear in the second coordinate, we'd get this on the third line instead:

$$
= f(x,x) + f(x,y) + f(y,x) + f(y,y) - (f(x,x) - f(y,x) - f(x,y) +f(y,y)) +i(f(x,x) + if(y,x) - if(x,y) - i^2 f(y,y)) -i(f(x,x) -if(y,x) +if(x,y) -i^2f(y,y))
$$

$$=f(x,y) +f(y,x) +f(y,x) +f(x,y) -f(y,x) +f(x,y) -f(y,x) +f(x,y) = 4f(x,y).$$

Just as asked. Possibly what he meant as Hermitian function is really the Sesquilinear?

Opalg said:
In the context of a vector space over the complex numbers, Hermitian always means sesquilinear.

Thanks very much for the reply. I am learning more from MHB than I learn in class. :p

So to confirm, in the case of bilinear maps over complex fields, Hermitian is the same as sesquilinear with the additional constraint, \(f(v,\,u)=\overline{f(u,\,v)}\) for all \(u,\,v\in V\). Am I correct? :)
 
Sudharaka said:
So to confirm, in the case of bilinear maps over complex fields, Hermitian is the same as sesquilinear with the additional constraint, \(f(v,\,u)=\overline{f(u,\,v)}\) for all \(u,\,v\in V\). Am I correct? :)
Yes. :)
 
Opalg said:
Yes. :)

Thanks very much, now I understand this perfectly. :)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 0 ·
Replies
0
Views
923
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K