MHB Holomorphic Function Continuity and Holomorphicity on Real Interval [2,5]

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on proving that a function \( f:\mathbb{C}\to\mathbb{C} \) that is continuous everywhere and holomorphic at every point except possibly on the real interval \([2,5]\) must be holomorphic on all of \(\mathbb{C}\). The participants explore using Morera's Theorem and the Cauchy-Goursat theorem to establish the holomorphicity of \( f \) on \([2,5]\). They detail the process of integrating around rectangles that avoid the problematic interval and demonstrate how to handle cases where the interval is included in the integration path.

PREREQUISITES
  • Understanding of holomorphic functions and continuity in complex analysis.
  • Familiarity with Morera's Theorem and its application in proving holomorphicity.
  • Knowledge of the Cauchy-Goursat theorem and its implications for contour integrals.
  • Ability to work with complex integrals and the properties of rectangles in the complex plane.
NEXT STEPS
  • Study Morera's Theorem in detail to understand its application in proving holomorphic functions.
  • Learn about the Cauchy-Goursat theorem and its proof to solidify understanding of contour integration.
  • Explore the concept of primitive functions in complex analysis and their significance.
  • Investigate the implications of holomorphic functions on closed curves and their integrals in complex analysis.
USEFUL FOR

Mathematicians, students of complex analysis, and anyone interested in the properties of holomorphic functions and their applications in mathematical proofs.

Dustinsfl
Messages
2,217
Reaction score
5
$f:\mathbb{C}\to\mathbb{C}$ is continuous everywhere, and holomorphic at every point except possibly the points in the interval $[2,5]$ on the real axis. Prove that $f$ must be holomorphic at every point of $\mathbb{C}$.

If it isn't continuous and holomorphic on $[2,5]$, then how can it be holomorphic at every point?
 
Physics news on Phys.org
dwsmith said:
If it isn't continuous and holomorphic on $[2,5]$, then how can it be holomorphic at every point?

The hypothesis:

Continuous everywhere, and holomorphic at every point except possibly the points in the interval $[2,5]$ on the real axis.

simply means: continuous in $\mathbb{C}$ and holomorphic in $\mathbb{C}-[2,5]$ .
 
Fernando Revilla said:
The hypothesis:

Continuous everywhere, and holomorphic at every point except possibly the points in the interval $[2,5]$ on the real axis.

simply means: continuous in $\mathbb{C}$ and holomorphic in $\mathbb{C}-[2,5]$ .

So I only need to show it is holomorphic on $[2,5]$ then correct? How do I start showing that?
 
Ok so I know this done by using Cauchy-Goursat rectangle proof, but I am not sure how to proceed.
 
morphism said:
Yes, something like that would work.
So I am trying to use Morera's Theorem:
Let U be an open set in C and let f be continuous on U. Assume that the integral of f along the boundary of every closed rectangle in U is 0. Then f is holomorphic.So let $U = \mathbb{C} - [2,5]$ Let R be rectangles in U which are parallel to the coordinate axes. So $\int_{\partial R} f = 0$.
Now how can I use this?
 
I have this proof for finite points but how would I modify it for infinite many points between [2,5]?

Assume $q(z)$ is any function that is holomorphic on a disc U except at a finite number of points $\xi_1,\ldots, \xi_n\in U$, and assume $\lim_{z\to\xi_j}(z-\xi_j)q(z)=0$ for $1\leq j\leq n$. Let $U'=U-\{\xi_1,\ldots\xi_n\}$. Then q is holomorphic on U'.
Note $F(z)=q(z)-f'(a)$ so $q(z)=\frac{f(z)-f(a)}{z-a}$

Step 1 is the Cauchy-Goursat argument:
$\int_{\partial R}q(z)dz=0$ for all rectangles R in U such that $\xi_j\notin\partial R$ for j.

proof:

Let R be a rectangle with the boundary of R in U'. First subdivide R into sub-rectangles so that each sub-rectangle has at most one $\xi_j$ inside it. By Cauchy-Goursat, $\int_{\partial R}=\sum_i\int_{\partial R_i}$. So it suffices to show $\int_{\partial R}q=0$ if R contains at most one $\xi_j$.
If R contains no $\xi_j$, then we are done by Cauchy-Goursat. Assume $\xi=\xi_j$ is inside R. Let $\epsilon>0$ be given. Put $\xi$ in a square of size x at the center of this where x is chosen small enough so that $|(z-\xi)q(z)|<\epsilon$ for z in and on this square. Subdivide this rectangle so the square which is x by x is its own rectangle around $\xi$. As before, the integrals of the sub-rectangles that don't contain $\xi$ are 0. So $\int_{\partial R}q=\int_{\text{square with xi}}q$.
$$
\left|\int_{\text{square with xi}}q\right|\leq \underbrace{||q||_{\text{square with xi}}}_{\frac{\epsilon}{\min\{|z-\xi|\}}}\times \underbrace{(\text{length of square with xi}}_{4x}\leq\frac{\epsilon}{x/2}4x=8\epsilon
$$
So $\left|\int_{\text{square with xi}}q\right|=0$.

Step 2 is to use step one to create a primitive for q on all of U.
Define $g(a)=\int_{z_0}^{z_1}q(z)dz$ where the path is from $z_0$ horizontal and then vertical. So $g(a)$ is well-defined. If a point is not unreachable, then $\lim_{h\to 0}\frac{g(a+h)-g(a)}{h}=q(a)$ by exactly the same means as before. Unreachable are the points vertical above $\xi$.
When computing $\frac{g(a+h)-g(a)}{h}$, only consider h in C with $|h|<\frac{\delta}{2}$. The path for computing g(a+h) also misses $\xi$. Then for these h $g(a+h)-g(a)=\int_a^{a+h}q$ so the same reason as before show $\frac{g(a+h)-g(a)}{h}-g(a)\to 0$ as $h\to 0$.

To handle all the bad exception.
Pick $\epsilon\geq 0$ such that the point $z_1=z_0+\epsilon(1+i)$ is not on any of the same vertical or horizontal lines as any $\xi_j$. Of course epsilon is really small compared to the radius of U.
Define $g_1(a)=\int_{z_1}^aq(z)dz$. This defines a primitive for q(z) on all of the disc except on the unreachable regions.
Define $g_2(a)=\int_{z_1}^aq(z)dz$ but this time move vertical and then horizontal. So $g_2(a)$ is also a primitive for q on U except at the its unreachable points (but g_1 reaches those points and vice versa). On the overlap, $g_1$ and $g_2$ are primitives for the same q. They differ only by a constant. But $g_1(z_1)=0=g_2(z_1)$ so $g_1=g_2$ on the overlap. For a small enough epsilon,
$$
g(z)=\begin{cases}g_1(z)\\g_2(z)\end{cases}
$$ is defined on all of U' and is a primitive for q.

How do I extend this to my problem?
 
Let $\gamma$ be a closed curve in $\mathbb{C}$. If $\gamma$ doesn't contain any point from [2,5] in its interior, then $\int_{\gamma}f=0$ since f is holomorphic away from [2,5]. Suppose that $\gamma$ contains [2,5] in its interior. Let R be a rectangle oriented with the coordinate axes in $\gamma$ such that [2,5] is in R such that $[2,5]\notin\partial R$. Divide the rectangle into two sub rectangles of length $1-\epsilon$ and $\epsilon$ such that [2,5] is contained in one the sub rectangles. WLOG suppose [2,5] is the rectangle of length $\epsilon$. Then the over f of the rectangle of length $1-\epsilon$ is zero.

Now how should the rectangle containing the interval be handled?
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K