Homeomorphisms with the discrete topology

  • Thread starter Thread starter Flying_Goat
  • Start date Start date
  • Tags Tags
    Discrete Topology
Click For Summary
SUMMARY

Sets with the same cardinality can be homeomorphic when assigned the discrete topology, as demonstrated by the intervals (0,1) and (2,3) ∪ (4,5). However, this assignment can obscure the intuitive understanding of continuous deformation, as the topological properties of a space are not inherent but depend on the chosen topology. The discussion emphasizes the importance of context in selecting a topology, as using the discrete topology universally would render all subspaces pairwise homeomorphic, diminishing the richness of topological theory.

PREREQUISITES
  • Understanding of homeomorphism in topology
  • Familiarity with discrete topology and its implications
  • Knowledge of connectedness and compactness in topological spaces
  • Basic concepts of topological invariants
NEXT STEPS
  • Explore the implications of weak topology in functional analysis
  • Study the concept of topological invariants and their significance
  • Learn about the differences between discrete and Euclidean topologies
  • Investigate examples of spaces that are homeomorphic under different topologies
USEFUL FOR

Mathematicians, particularly those specializing in topology, students studying advanced mathematics, and anyone interested in the properties of topological spaces and their invariants.

Flying_Goat
Messages
15
Reaction score
0
Surely sets with the same cardinality are homeomorphic if we assign both of them the discrete topology. What's preventing us from doing that?

For example, (0,1) and (2,3) \cup (4,5) have the same cardinality. With the natural subspace topology they are not homeomorphic - as one is connected and the other isn't. However I could say that they are homeomorphic by assigning the discrete topology on both. Why can't we do that? Is it because that we would lose our intuition of 'continuous deformation' if we did this?

This may sound stupid but I can't seem to get my head around this.

Thanks.
 
Last edited:
Physics news on Phys.org
Well, I would say:

Sometimes , from the context/situation, there is a natural topology that is assumed,

and this topology is not (equivalent to ) the discrete topology. You may think of

a subspace as being the restriction of the Euclidean topology. Sometimes you want

to make your topologies bigger or smaller to allow, e.g., for more compact sets--

which happens when your topology has fewer open sets-- or allowing more sequences

to converge (compactness has a lot of nice consequences ). So you adjust your choice

of topology to the needs of the situation. This

happens, e.g., in functional analysis; see weak topology, weak* topology, strong

topology, etc.

Also, if all your subspaces are pairwise- homeomorphic , then your theory becomes

too general to be interesting. Think that if you applied this idea to spaces in general,
Let me see if I can think of better examples/explanations. Maybe this can explain

better: http://mathforum.org/kb/message.jspa?messageID=7036258&tstart=90

and follow the links.
 
Flying_Goat said:
Surely sets with the same cardinality are homeomorphic if we assign both of them the discrete topology. What's preventing us from doing that?

For example, (0,1) and (2,3) \cup (4,5) have the same cardinality. With the natural subspace topology they are not homeomorphic - as one is connected and the other isn't. However I could say that they are homeomorphic by assigning the discrete topology on both. Why can't we do that? Is it because that we would lose our intuition of 'continuous deformation' if we did this?

This may sound stupid but I can't seem to get my head around this.

Thanks.

Yeah, everything is right. The two sets with the discrete topology are indeed homeomorphic.

Do you find this unintuitive?
 
I think the OP wants to know why one doesn't just choose to use the discrete

topology on all subspaces, which would make all subspaces pairwise homeomorphic.

Maybe the OP could clarify this ; I hope I did not misrepresent your question, OP,

and let me know otherwise.
 
micromass said:
Do you find this unintuitive?

Surely the disjoint interval (0,1) with the discrete topology is 'disconnected' by definition, but intuitively it shouldn't be. What I am confused about is that the topological properties of a space changes as you change the topology - it is not an inherent property of the space. With the usual topologies, (0,1) and (2,3)\cup (4,5) are not homeomorphic, but they are with the discrete topology. By changing the topolgies, I can(probably) make their topological properties the same. So what is the point of finding topological invariants in the first place?

If X and Y are homeomorphic, it means that you can 'continuously deform' X into Y. Under what topology(s) would this 'continuous deformation' actually coincide with our intuitive notion of continuous deformation? Does it only happen when we assign the spaces with the normal euclidean subspace topology, as stated by Bacle?
 
Last edited:
The point is that you usually have fixed topologies on your spaces. So a topological invariant depends on both the space and the topology you give it. The same space with a different topology could very well have different invariants.
 
As shown by this animation, the fibers of the Hopf fibration of the 3-sphere are circles (click on a point on the sphere to visualize the associated fiber). As far as I understand, they never intersect and their union is the 3-sphere itself. I'd be sure whether the circles in the animation are given by stereographic projection of the 3-sphere from a point, say the "equivalent" of the ##S^2## north-pole. Assuming the viewpoint of 3-sphere defined by its embedding in ##\mathbb C^2## as...

Similar threads

  • · Replies 61 ·
3
Replies
61
Views
7K
  • · Replies 43 ·
2
Replies
43
Views
6K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 42 ·
2
Replies
42
Views
8K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
12K