MHB Homework: 13s: Critical Thinking Challenge

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The discussion revolves around a homework assignment involving matrix transformations and critical thinking in mathematics. Participants analyze the transformation S, which maps a vector [x, y] to [x - 2y, 3x - y], and discuss the legality of adding matrices of different dimensions. There is a focus on step-by-step calculations for S^2 and the composite transformation ST, with corrections and clarifications provided throughout the conversation. The importance of correctly applying transformations in sequence is emphasized, particularly distinguishing between composite and product operations. Overall, the thread highlights the collaborative effort to understand and solve complex mathematical problems.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 8848

ok just sent this homework in (maybe typos} :cool:
on TS i think this is as far you can go with the current dimensions

critical thinking accepted...:cool:
 
Physics news on Phys.org
karush said:
ok just sent this homework in (maybe typos} :cool:
on TS i think this is as far you can go with the current dimensions

critical thinking accepted...:cool:
The first two are right, though I'm really not fond of your text trying to add a 2x1 matrix with a 3x1 in the second one. That's rather illegal, but not your problem.

As for [math]S^3[/math], take it step by step.
[math]S \left [ \begin{matrix} x \\ y \end{matrix} \right ] = \left [ \begin{matrix} x - 2y \\ 3x - y \end{matrix}\right ] [/math]

[math]S^2 \left [ \begin{matrix} x \\ y \end{matrix} \right ] = S \left ( S \left [ \begin{matrix} x \\ y \end{matrix} \right ] \right )[/math]

[math] = S \left [ \begin{matrix} x - 2y \\ 3x - y \end{matrix} \right ] = \left [ \begin{matrix} (x - 2y) - 2(3x - y) \\ 3(x - 2y) - (3x -y) \end{matrix} \right ] = \left [ \begin{matrix} -5x \\ -5y \end{matrix} \right ] [/math]

Now you finish the rest.

-Dan
 
karush said:
$\displaystyle = S \left [ \begin{matrix} x - 2y \\ 3x - y \end{matrix} \right ] = \left [ \begin{matrix} (x - 2y) - 2(3x - y) \\ 3(x - 2y) - (3x -y) \end{matrix} \right ] = \left [ \begin{matrix} -5x \\ -5y \end{matrix} \right ]$so then kinda maybe
$S\left [ \begin{matrix} -5x \\ -5y \end{matrix} \right ]
=\left [ \begin{matrix} -5(x-2y) \\ -5(3x-y) \end{matrix} \right ]
=\left [ \begin{matrix} -5x-10y \\ -15x-5y \end{matrix} \right ]$
The transformation S takes a value [math]x \to x - 2y[/math] and [math]y \to 3x - y[/math], so your new x value will be (-5x) - 2(-5y) and your new y value will be 3(-5x) - (-5y).

-Dan
 
so you mean this
$S\left [ \begin{matrix} -5x \\ -5y \end{matrix} \right ]
=\left [ \begin{matrix} (-5x) - 2(-5y) \\ 3(-5x) - (-5y) \end{matrix} \right ]
=\left [ \begin{matrix} -5x-10y \\ -15x-5y \end{matrix} \right ]$
 
so for ST if
$S\left(\left[\begin{array}{c}x \\ y \end{array}\right]\right)
=\left[\begin{array}{c}x-2y \\ 3x-y \end{array}\right], \quad
T\left(\left[\begin{array}{c}x \\ y \end{array}\right]\right)
=\left[\begin{array}{c}x+y \\ x-y\\2x+3y \end{array}\right]$

then

$S\left(\left[\begin{array}{c}x-2y \\ 3x-y \end{array}\right]\right)
=\left[\begin{array}{c}(x-2y)+(3x-y) \\ (x-2y)-(3x-y)\\2(x-2y)+3(3x-y) \end{array}\right]$
if ok then simplify..
 
Last edited:
karush said:
so you mean this
$S\left [ \begin{matrix} -5x \\ -5y \end{matrix} \right ]
=\left [ \begin{matrix} (-5x) - 2(-5y) \\ 3(-5x) - (-5y) \end{matrix} \right ]
=\left [ \begin{matrix} -5x-10y \\ -15x-5y \end{matrix} \right ]$
Watch the double negatives!

-Dan

- - - Updated - - -

karush said:
so for ST if
$S\left(\left[\begin{array}{c}x \\ y \end{array}\right]\right)
=\left[\begin{array}{c}x-2y \\ 3x-y \end{array}\right], \quad
T\left(\left[\begin{array}{c}x \\ y \end{array}\right]\right)
=\left[\begin{array}{c}x+y \\ x-y\\2x+3y \end{array}\right]$

then

$S\left(\left[\begin{array}{c}x-2y \\ 3x-y \end{array}\right]\right)
=\left[\begin{array}{c}(x-2y)+(3x-y) \\ (x-2y)-(3x-y)\\2(x-2y)+3(3x-y) \end{array}\right]$
if ok then simplify..
I think you mean
[math]T \left ( \left [ \begin{array}{c}x-2y \\ 3x-y \end{array} \right ] \right ) [/math]
in that last line. Otherwise, yes, good!

-Dan
 
A random thought. When you were doing the TS part you do realize you do S and then T, right?

-Dan
 
topsquark said:
A random thought. When you were doing the TS part you do realize you do S and then T, right?

-Dan
Yeah I thot it was a product
Not a composite
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
523
  • · Replies 3 ·
Replies
3
Views
1K