MHB Homogeneous linear ODEs with Constant Coefficients

oasi
Messages
14
Reaction score
0
do you have a idea about it?can you help me

http://img17.imageshack.us/img17/1156/18176658.png
 
Physics news on Phys.org
oasi said:
do you have a idea about it?can you help me

http://img17.imageshack.us/img17/1156/18176658.png

For example, take $ay' + by = 0$. Solving for y' yields
$$
y' = -\frac{b}{a}y = ky
$$
where k = -b/a.

The only nontrivial function whose derivative is a constant multiple of itself is an exponential function.
 
But $y = \sin x$ could work. For example,

$y'' + y = 0$

has as one solution $y = \sin x$.
 
Jester said:
But $y = \sin x$ could work. For example,

$y'' + y = 0$

has as one solution $y = \sin x$.

As long as the boundaries aren't $y'(0) = 0$ and $y'\left(\frac{\pi}{2}\right) = 0$ then y = 0. :)

But $y = A\sin x + B\cos x = e^0\left(A\sin x + B\cos x\right)$ is also a solution of the non boundary value problem.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top