Is ElGamal Signature Scheme Secure Without Using a Hash Function?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary
SUMMARY

The ElGamal signature scheme, when implemented without a hash function, is susceptible to existential forgery attacks. In the discussion, Alice uses the scheme in the group $(\mathbb{Z}/p\mathbb{Z})^{\star}$, where she calculates the signature $(r,s)$ for a message $m$ using a random $k$. The example provided demonstrates how to derive a signature for the message $m' = rm \pmod q$ using the existing signature $(r, s)$ without knowing Alice's private key. This highlights a critical vulnerability in the scheme's security when not combined with hashing.

PREREQUISITES
  • Understanding of the ElGamal signature scheme
  • Familiarity with modular arithmetic and groups, specifically $(\mathbb{Z}/p\mathbb{Z})^{\star}$
  • Knowledge of existential forgery in cryptography
  • Basic concepts of public and private key cryptography
NEXT STEPS
  • Research the implications of existential forgery in cryptographic schemes
  • Learn about the role of hash functions in digital signatures
  • Study the mathematical foundations of modular arithmetic in cryptography
  • Explore the security enhancements in the ElGamal signature scheme with hashing
USEFUL FOR

Cryptography students, security researchers, and developers implementing digital signature schemes will benefit from this discussion, particularly those interested in the vulnerabilities of the ElGamal signature scheme.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Alice uses the ElGamal signature scheme in the group $(\mathbb{Z}/p\mathbb{Z})^{\star}$ without the use of a hash function. To sign the message $m \in (\mathbb{Z}/p\mathbb{Z})^{\star}$ she calculates the signature $(r,s)$ as follows:
she choose a random $k \in \{0, 1, \dots , q-1\}$, where $q \mid p-1$ is a prime and the order of the basis $g$, and then she calculates $$r \equiv g^k \pmod p \ \ , \ \ s \equiv k^{-1} (m+ar) \pmod q$$ where $a$ is the private key.

  1. Show that given the signature$(r, s)$ at the message $m$ we can construct the signature at the message $rm \pmod q$ (without knowing the private key of Alice).
  2. For $p=23, g=2, q=11$, we are given given the signature $(18, 3)$ at the message $m=2$. Construct a signature at the message $m'=3$ (without calculating the private key). The public key of Alice is $y=13$.

Could you give me some hints for the first question?? How can we find the signature at the message $rm \pmod q$ ?? (Wondering)
 
Mathematics news on Phys.org
mathmari said:
Hey! :o

Alice uses the ElGamal signature scheme in the group $(\mathbb{Z}/p\mathbb{Z})^{\star}$ without the use of a hash function. To sign the message $m \in (\mathbb{Z}/p\mathbb{Z})^{\star}$ she calculates the signature $(r,s)$ as follows:
she choose a random $k \in \{0, 1, \dots , q-1\}$, where $q \mid p-1$ is a prime and the order of the basis $g$, and then she calculates $$r \equiv g^k \pmod p \ \ , \ \ s \equiv k^{-1} (m+ar) \pmod q$$ where $a$ is the private key.

  1. Show that given the signature$(r, s)$ at the message $m$ we can construct the signature at the message $rm \pmod q$ (without knowing the private key of Alice).
  2. For $p=23, g=2, q=11$, we are given given the signature $(18, 3)$ at the message $m=2$. Construct a signature at the message $m'=3$ (without calculating the private key). The public key of Alice is $y=13$.

Could you give me some hints for the first question?? How can we find the signature at the message $rm \pmod q$ ?? (Wondering)

Hi mathmari,

Let me give you a hint. Probably if you are taking a Cryptography course you might have learned (which I assume seeing your previous questions about the ElGamal scheme) that the message is hashed before being encrypted using the ElGamal scheme.

In this question that hashing process was not done. This makes the scheme vulnerable to an attack known as Existential Forgery. All you got to know about this is mentioned in the Wikipedia link.

https://en.wikipedia.org/wiki/ElGamal_signature_scheme#Existential_forgery
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 46 ·
2
Replies
46
Views
8K
  • · Replies 5 ·
Replies
5
Views
1K