How can complex numbers be used to solve infinite product and sum equations?

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
SUMMARY

This discussion focuses on the relationship between complex numbers and infinite product and sum equations, specifically demonstrating that for a complex number \( q \) with \( |q| < 1 \), the equation $$\prod_{n = 1}^\infty (1 - q^n) \sum_{n = -\infty}^\infty q^{n+2n^2} = \prod_{n = 1}^\infty (1 - q^{2n})^2$$ holds true. The discussion emphasizes the importance of understanding the convergence of these series, although it notes that convergence arguments are not the focus. The problem remains unsolved by participants, indicating a need for deeper exploration of the topic.

PREREQUISITES
  • Understanding of complex numbers and their properties
  • Familiarity with infinite products and sums
  • Knowledge of convergence criteria for series
  • Basic experience with mathematical proofs and identities
NEXT STEPS
  • Study the properties of infinite products in complex analysis
  • Explore the theory behind the Jacobi theta function and its applications
  • Learn about modular forms and their relationship to infinite series
  • Investigate convergence tests for series and products in mathematical analysis
USEFUL FOR

Mathematicians, students of complex analysis, and anyone interested in advanced mathematical concepts related to infinite series and products will benefit from this discussion.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Let $q$ be a complex number with $\lvert q \rvert < 1$. Show that

$$\prod_{n = 1}^\infty (1 - q^n) \sum_{n = -\infty}^\infty q^{n+2n^2} = \prod_{n = 1}^\infty (1 - q^{2n})^2$$

-----

Note: Do not worry about arguments of convergence.Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. You can read my solution below.
Consider Jacobi's triple product identity

$$\sum_{n = -\infty}^\infty z^n q^{n^2} = \prod_{n = 1}^\infty (1 - q^{2n})(1 + zq^{2n-1})(1 + z^{-1}q^{2n-1})$$

Letting $q\mapsto q^2$ and setting $z = q$ in the identity yields

$$\sum_{n = -\infty}^\infty q^{n + 2n^2} = \prod_{n = 1}^\infty (1 - q^{4n})(1 + q^{4n-1})(1 + q^{4n-3})\tag{1}$$

Since

$$\prod_{n = 1}^\infty (1 - q^{4n-1})(1 + q^{4n-3}) = \prod_{n\; \text{even}} (1 - q^{2n-1}) \prod_{n\; \text{odd}} (1 - q^{2n-1}) = \prod_{n = 1}^\infty (1 - q^{4n-1})$$

then the product in $(1)$ becomes

$$\prod_{n = 1}^\infty (1 - q^{4n})(1 + q^{2n-1})\tag{2}$$

By factorization $1 - q^{4n} = (1 - q^{2n})(1 + q^{4n})$, the product in $(3)$ can be expressed

$$\prod_{n = 1}^\infty (1 - q^{2n})(1 + q^{2n})(1 + q^{2n-1})\tag{3}$$

The product in $(3)$ contains all products of even and odd parts of $1 + q^n$, so $(3)$ becomes

$$\prod_{n = 1}^\infty (1 - q^{2n})(1 + q^n)\tag{4}$$

Since $1 + q^n = \frac{1 - q^{2n}}{1 - q^n}$, $(4)$ can be written

$$\prod_{n = 1}^\infty \frac{(1 - q^{2n})^2}{1 - q^n}$$

Thus

$$\sum_{n = -\infty}^\infty q^{n + 2n^2} = \prod_{n = 1}^\infty \frac{(1 - q^{2n})^2}{1 - q^n}\tag{5}$$

Finally, multiplying both sides of $(5)$ by $\prod_{n = 1}^\infty (1 - q^n)$, the result is established.
 

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K