How can I show the inequality?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
SUMMARY

The discussion focuses on establishing asymptotic bounds for the recursive relation $T(n)=3 T(\frac{n}{3}+5)+\frac{n}{2}$. The user successfully applies the Master Theorem, concluding that $T'(n)=\Theta(n \lg n)$. They demonstrate the lower bound $c_1 n \lg n \leq T(n)$ but seek assistance in proving the upper bound $T(n) \leq c_2 n \lg n$. The user proposes a method involving inequalities and substitutions to continue their proof.

PREREQUISITES
  • Understanding of recursive relations and asymptotic analysis
  • Familiarity with the Master Theorem for solving recurrences
  • Knowledge of logarithmic functions and their properties
  • Basic algebraic manipulation skills for inequalities
NEXT STEPS
  • Study the Master Theorem in detail, focusing on its application to different cases
  • Learn about advanced techniques for proving upper bounds in recursive relations
  • Explore the properties of logarithmic functions and their impact on asymptotic analysis
  • Practice solving similar recursive relations to reinforce understanding
USEFUL FOR

Students and professionals in computer science, particularly those focusing on algorithm analysis, recursive algorithms, and asymptotic notation.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hey! (Mmm)

I have to define an asymptotic upper and lower bound of the recursive relation $T(n)=3 T(\frac{n}{3}+5)+\frac{n}{2}$.

Firstly,I solved the recursive relation: $T'(n)=3 T'(\frac{n}{3})+\frac{n}{2}$,using the master theorem:

$$a=3 \leq 1, b=3>1, f(n)=\frac{n}{2} \text{ asymptotically positive and increasing}$$

$$n^{\log_b a}=n$$

We see that : $f(n)=\Theta(n)$

So,from the master theorem: $$T'(n)=\Theta(n \lg n)$$

Then,I supposed that $T(n)=\Theta(n \lg n)$, so $\exists c_1, c_2>0 \text{ and } n_0 \geq 1 \text{ such that } \forall n \geq n_0: c_1 n \lg n \leq T(n) \leq c_2 n \lg n$

I showed that the inequality $c_1 n \lg n \leq T(n)$ is true..But..how can I show the inequality :

$$T(n) \leq c_2 n \lg n $$
?

I tried this:

Suppose that the inequality stands for $\frac{n}{3}+5$.Then: $$T(\frac{n}{3}+5) \leq c_2 (\frac{n}{3}+5) \lg (\frac{n}{3}+5)$$

$$T(n)=3 T(\frac{n}{3}+5)+\frac{n}{2}\leq 3 c_2 (\frac{n}{3}+5) \lg (\frac{n}{3}+5)+\frac{n}{2}=c_2(n+15) \lg (\frac{n}{3}+5)+\frac{n}{2} $$

How can I continue? (Thinking) (Thinking)
 
Physics news on Phys.org
Could we show it maybe like that?

$$T(n) \leq c_2(n+15) \lg (\frac{n}{3}+5)+\frac{n}{2}$$

Let $\frac{n}{3}+5 \leq \frac{n}{2} \Rightarrow n \geq 30$

Then $\forall n \geq 30:$

$$T(n) \leq c_2(n+15) \lg (\frac{n}{3}+5)+\frac{n}{2} \leq c_2(n+15) \lg (\frac{n}{2})+n = c_2 n \lg (\frac{n}{2})+15 c_2 \lg (\frac{n}{2})+n =c_2 n \lg n-(c_2 n-15c_2 \lg n+15 c_2-\frac{n}{2}) \leq c_2 n \lg n, \text{ if } c_2 n-15c_2 \lg n+15 c_2-\frac{n}{2} \geq 0$$

(Thinking)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K