How can I solve the problem of $e^x-\ln{x}=4$ without a calculator?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Log
Click For Summary

Discussion Overview

The discussion revolves around solving the equation $e^x - \ln{x} = 4$ without the use of a calculator. Participants explore various methods for finding approximate solutions, including iterative techniques and the limitations of obtaining an exact form.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants mention that a calculator is typically needed to solve the equation, while others suggest that iterative methods like Newton's Method can be used.
  • It is noted that while it is easy to show that a root exists, obtaining an exact form for the solution is impossible.
  • Newton's Method is described in detail by one participant, including the steps involved in selecting a starting point and iterating to find the root.
  • Some participants express uncertainty about how to apply Newton's Method effectively.
  • There are mentions of using computer algebra systems (CAS) like Wolfram Alpha for solving the equation, which some participants prefer over handheld calculators.
  • One participant reflects on the challenges of using older methods, such as tables for exponential and logarithmic functions, suggesting a preference for modern tools.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best method to solve the equation without a calculator. Multiple competing views on the use of iterative methods versus calculators remain evident throughout the discussion.

Contextual Notes

Some participants mention the limitations of their tools and the challenges of finding an exact solution, indicating that the discussion is constrained by the methods available to them.

Who May Find This Useful

This discussion may be useful for students or individuals interested in numerical methods for solving equations, particularly those who are exploring alternatives to calculators for mathematical problem-solving.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
solve $e^x-\ln{x}=4\quad
x\approx1.48
\quad x\approx 005$

ok I could only do this with a calculator but need steps
 
Last edited:
Mathematics news on Phys.org
Newton's method solves this readily enough.
 
Yes, either use a calculator or do a whole lot of arithmetic with paper and pencil!
 
To answer your question, even though it's easy to show that a root exists, it's actually impossible to get an exact form for.

As others have suggested, if you want to get an approximate solution, you'll need an iterative method such as Newton's Method, or get the CAS to solve it for you.
 
romsek said:
Newton's method solves this readily enough.
don't think I would know how to use Newtons method on this
 
Prove It said:
To answer your question, even though it's easy to show that a root exists, it's actually impossible to get an exact form for.

As others have suggested, if you want to get an approximate solution, you'll need an iterative method such as Newton's Method, or get the CAS to solve it for you.
I quit buying handheld calculators I had a TI inspire CS CAS but the keyboard wore out

W|A can calculate it
 
karush said:
I quit buying handheld calculators I had a TI inspire CS CAS but the keyboard wore out

W|A can calculate it

Which is a CAS...
 
Prove It said:
Which is a CAS...

yes but its not a handheld that requires e charging and is easily lost
and a hard to read screen
 
  • #10
To use Newton's method, we select some starting point, hopefully close to a root of the equation but not necessarily. If that point happens to be a root, we are done. If not then we construct the tangent line to the graph of the function at that point and solve the linear equation to see where that tangent line crosses the x-axis. Hopefully, if that new x value is not a root, it is closer so we do it again.

Specifically, if the problem is to solve f(x)= 0 and we choose $x_0$ as our starting point, the tangent line is $y= f'(x_0)(x- x_0)+ f(x_0)$. Setting that equal to 0, $f'(x_0)(x- x_0)+ f(x_0)= 0$ so $f'(x_0)(x- x_0)= -f(x_0)$, $x- x_0= -\frac{f(x_0)}{f'(x_0)}$ and then $x= x_0- \frac{f(x_0)}{f'(x_0)}$.

THAT is "Newton's method"-to solve f(x)= 0, select some starting $x_0$ and calculate $x_1= x_0- \frac{f(x_0)}{f'(x_0)}$. Then calculate $x_2= x_1- \frac{f(x_1)}{f'(x_1)}$ and keep repeating that until you get the accuracy you want. Typically you know you are close to the desired root because the values are close together. For example, if you want the root "correct to three decimal places" keep repeating until successive values of x are correct to three decimal places.

Here, $f(x)= e^x- log(x)- 4$ and $f'(x)= e^x-\frac{1}{x}$ so that $x_1= x_0- \frac{f(x_0)}{f'(x_0)}= x_0-\frac{e^{x_0}- log(x_0)- 4}{e^{x_0}- \frac{1}{x_0}}$.
Choose some starting value, say $x_0=1$ or $x_0= 2$ and start calculating!

If you were as old as I am you would have learned to use tables to find the exponential and logarithm but for God's sake use a calculator!
 
  • #11
Mahalo that was a great help
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 44 ·
2
Replies
44
Views
5K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K