MHB How can I solve the problem of $e^x-\ln{x}=4$ without a calculator?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Log
Click For Summary
SUMMARY

The equation $e^x - \ln{x} = 4$ can be solved using Newton's Method, an iterative numerical technique. The approximate solutions are $x \approx 1.48$ and $x \approx 0.05$. Newton's Method requires selecting a starting point and iteratively refining the estimate using the formula $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, where $f(x) = e^x - \ln{x} - 4$ and $f'(x) = e^x - \frac{1}{x}$. While calculators or Computer Algebra Systems (CAS) like Wolfram Alpha can provide solutions, understanding Newton's Method is essential for manual calculations.

PREREQUISITES
  • Understanding of Newton's Method for root-finding
  • Familiarity with exponential and logarithmic functions
  • Basic calculus concepts, including derivatives
  • Knowledge of iterative numerical methods
NEXT STEPS
  • Learn the detailed steps of Newton's Method implementation
  • Explore the use of Computer Algebra Systems (CAS) for solving equations
  • Study the convergence criteria for iterative methods
  • Investigate alternative numerical methods for root-finding, such as the Bisection Method
USEFUL FOR

Students in calculus courses, mathematicians, and anyone interested in numerical methods for solving equations will benefit from this discussion.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
solve $e^x-\ln{x}=4\quad
x\approx1.48
\quad x\approx 005$

ok I could only do this with a calculator but need steps
 
Last edited:
Mathematics news on Phys.org
Newton's method solves this readily enough.
 
Yes, either use a calculator or do a whole lot of arithmetic with paper and pencil!
 
To answer your question, even though it's easy to show that a root exists, it's actually impossible to get an exact form for.

As others have suggested, if you want to get an approximate solution, you'll need an iterative method such as Newton's Method, or get the CAS to solve it for you.
 
romsek said:
Newton's method solves this readily enough.
don't think I would know how to use Newtons method on this
 
Prove It said:
To answer your question, even though it's easy to show that a root exists, it's actually impossible to get an exact form for.

As others have suggested, if you want to get an approximate solution, you'll need an iterative method such as Newton's Method, or get the CAS to solve it for you.
I quit buying handheld calculators I had a TI inspire CS CAS but the keyboard wore out

W|A can calculate it
 
karush said:
I quit buying handheld calculators I had a TI inspire CS CAS but the keyboard wore out

W|A can calculate it

Which is a CAS...
 
Prove It said:
Which is a CAS...

yes but its not a handheld that requires e charging and is easily lost
and a hard to read screen
 
  • #10
To use Newton's method, we select some starting point, hopefully close to a root of the equation but not necessarily. If that point happens to be a root, we are done. If not then we construct the tangent line to the graph of the function at that point and solve the linear equation to see where that tangent line crosses the x-axis. Hopefully, if that new x value is not a root, it is closer so we do it again.

Specifically, if the problem is to solve f(x)= 0 and we choose $x_0$ as our starting point, the tangent line is $y= f'(x_0)(x- x_0)+ f(x_0)$. Setting that equal to 0, $f'(x_0)(x- x_0)+ f(x_0)= 0$ so $f'(x_0)(x- x_0)= -f(x_0)$, $x- x_0= -\frac{f(x_0)}{f'(x_0)}$ and then $x= x_0- \frac{f(x_0)}{f'(x_0)}$.

THAT is "Newton's method"-to solve f(x)= 0, select some starting $x_0$ and calculate $x_1= x_0- \frac{f(x_0)}{f'(x_0)}$. Then calculate $x_2= x_1- \frac{f(x_1)}{f'(x_1)}$ and keep repeating that until you get the accuracy you want. Typically you know you are close to the desired root because the values are close together. For example, if you want the root "correct to three decimal places" keep repeating until successive values of x are correct to three decimal places.

Here, $f(x)= e^x- log(x)- 4$ and $f'(x)= e^x-\frac{1}{x}$ so that $x_1= x_0- \frac{f(x_0)}{f'(x_0)}= x_0-\frac{e^{x_0}- log(x_0)- 4}{e^{x_0}- \frac{1}{x_0}}$.
Choose some starting value, say $x_0=1$ or $x_0= 2$ and start calculating!

If you were as old as I am you would have learned to use tables to find the exponential and logarithm but for God's sake use a calculator!
 
  • #11
Mahalo that was a great help
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 44 ·
2
Replies
44
Views
5K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
2
Views
4K
  • · Replies 6 ·
Replies
6
Views
1K