How Can We Prove that a Recursively Defined Sequence Has a Period of 8?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around proving that a recursively defined sequence, given by the relation $$a_{n+3}=\frac{1+a_{n+1}+a_{n+2}}{a_n}$$, has a period of 8. Participants explore various mathematical approaches and reasoning related to the periodicity of the sequence.

Discussion Character

  • Technical explanation, Mathematical reasoning, Debate/contested

Main Points Raised

  • One participant introduces the recursive definition and asks for proof of the periodicity of 8.
  • Another participant references a paper by Lothar Berg discussing conditions under which a difference equation admits periodic solutions, suggesting that the characteristic polynomial derived from the recursive relation indicates periodicity.
  • Further contributions involve manipulating the recursive equation to derive relationships between terms, leading to the conclusion that $$a_{n+4}=a_{n-4}$$ for $$n \ge 4$$, which implies periodicity.
  • Some participants express a desire to explore the problem further before arriving at a solution, indicating a collaborative atmosphere.
  • One participant shares a detailed derivation of the periodicity, showing step-by-step transformations of the recursive relation to arrive at the conclusion that $$a_{n}=a_{n+8}$$ for $$n \ge 0$$.

Areas of Agreement / Disagreement

There is no explicit consensus on the proof of periodicity, as participants present different approaches and reasoning. Some participants agree on the periodicity based on the derived relationships, while others express a desire for further exploration before finalizing a solution.

Contextual Notes

The discussion includes various mathematical manipulations and assumptions about the recursive sequence, but it does not resolve all uncertainties regarding the conditions under which the periodicity holds.

Who May Find This Useful

Readers interested in recursive sequences, periodic solutions in difference equations, and mathematical proofs related to sequences may find this discussion beneficial.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Suppose $$\left({a_n}\right)_{n=1}^\infty$$ be recursively defined by $a_0>1$, $a_1>0$ and $a_2>0$,

$$a_{n+3}=\frac{1+a_{n+1}+a_{n+2}}{a_n}$$ for $n=0,1,2,\cdots$,

Show that $a_n$ has period of 8.
 
Mathematics news on Phys.org
Re: Show that a_{n+8}=a_n

anemone said:
Suppose $$\left({a_n}\right)_{n=1}^\infty$$ be recursively defined by $a_0>1$, $a_1>0$ and $a_2>0$,

$$a_{n+3}=\frac{1+a_{n+1}+a_{n+2}}{a_n}$$ for $n=0,1,2,\cdots$,

Show that $a_n$ has period of 8.

In the paper of Lothar Berg 'Nonlinear difference equation with periodic solutions' [2006] it is explained that given a difference equation like... $\displaystyle x_{n+1} = f(x_{n},x_{n-1},...,x_{n-k})\ (1)$... it admits a periodic solution of periodo p if it exists an equilibrium point $x^{*}$ such that... $\displaystyle x^{*} = f(x^{*},x^{*},...,x^{*})\ (2)$... and, defining... $\displaystyle f_{i}= \frac{\partial f}{\partial u_{i}} (x^{*},x^{*},...,x^{*})\ (3)$

... all the rouths of the polynomial... $\displaystyle \lambda^{k+1} - f_{0} \lambda^{k} - ... - f_{k-1} \lambda - f_{k}\ (4)$

... are simple p-th routh of unity. In Your case is...

$\displaystyle x_{n+1}= \frac{1 + x_{n} + x_{n-1}}{x_{n-2}}\ (5)$

... the characteristic polynomial is...

$\displaystyle \lambda^{3} - \frac{1}{x^{*}}\ (\lambda^{2} + \lambda) + 1\ (6)$ ... with $\displaystyle x^{*} = 1 \pm \sqrt{2}$ and the roths of (6) are... $\displaystyle \lambda = -1, \lambda = \frac {1-i}{\sqrt{2}}, \lambda = \frac{1+i}{\sqrt{2}}, \lambda = - \frac{1+i}{\sqrt{2}}, \lambda =- \frac{1-i}{\sqrt{2}}\ (7)$ ... so that the periodicity p=8 is demonstrated...

Kind regards

$\chi$ $\sigma$

P.S. the Lotahr's article is ...

http://ftp.math.uni-rostock.de/pub/romako/heft61/lothar.pdf

 
Last edited:
Re: Show that a_{n+8}=a_n

chisigma said:
In the paper of Lothar Berg 'Nonlinear difference equation with periodic solutions' [2006] it is explained that given a difference equation like... $\displaystyle x_{n+1} = f(x_{n},x_{n-1},...,x_{n-k})\ (1)$... it admits a periodic solution of periodo p if it exists an equilibrium point $x^{*}$ such that... $\displaystyle x^{*} = f(x^{*},x^{*},...,x^{*})\ (2)$... and, defining... $\displaystyle f_{i}= \frac{\partial f}{\partial u_{i}} (x^{*},x^{*},...,x^{*})\ (3)$

... all the rouths of the polynomial... $\displaystyle \lambda^{k+1} - f_{0} \lambda^{k} - ... - f_{k-1} \lambda - f_{k}\ (4)$

... are simple p-th routh of unity. In Your case is...

$\displaystyle x_{n+1}= \frac{1 + x_{n} + x_{n-1}}{x_{n-2}}\ (5)$

... the characteristic polynomial is...

$\displaystyle \lambda^{3} - \frac{1}{x^{*}}\ (\lambda^{2} + \lambda) + 1\ (6)$ ... with $\displaystyle x^{*} = 1 \pm \sqrt{2}$ and the roths of (6) are... $\displaystyle \lambda = -1, \lambda = \frac {1-i}{\sqrt{2}}, \lambda = \frac{1+i}{\sqrt{2}}, \lambda = - \frac{1+i}{\sqrt{2}}, \lambda =- \frac{1-i}{\sqrt{2}}\ (7)$ ... so that the periodicity p=8 is demonstrated...

Kind regards

$\chi$ $\sigma$

P.S. the Lotahr's article is ...

http://ftp.math.uni-rostock.de/pub/romako/heft61/lothar.pdf



Hi chisigma,

Thanks for participating and thanks for the pdf link too, that's a wonderful reading material to say the least...

I'll only post the solution to this problem later, I just feel there are others who still want to attempt to it. :D
 
Re: Show that a_{n+8}=a_n

Here is the solution provided by others which I think is worth sharing at MHB:

We're given $$a_{n+3}=\frac{1+a_{n+1}+a_{n+2}}{a_n}$$ for $n=0,1,2,\cdots$

First we multiply the equation by $a_n$ to eliminate the fraction and get

$a_{n+3}a_{n}=1+a_{n+1}+a_{n+2}$---(1)

If we replace $n$ by $n-1$, the above equation becomes

$a_{n+2}a_{n-1}=1+a_{n}+a_{n+1}$---(2)

And subtracting the equations (1) and (2) yields

$a_{n+3}a_{n}-a_{n+2}a_{n-1}=a_{n+2}-a_{n}$

Collecting the like terms and factoring out the common factor we now have

$a_{n}(1+a_{n+3})=a_{n+2}(1+a_{n-1})$

Adding the term $a_{n}a_{n+2}$ to both sides we get

$a_{n}(1+a_{n+2}+a_{n+3})=a_{n+2}(1+a_{n-1}+a_{n})$---(*)

And by applying the given recursive equation to (*) we obtain

$a_{n}a_{n+1}a_{n+4}=a_{n+2}a_{n+1}a_{n-2}$

$a_{n}a_{n+4}=a_{n+2}a_{n-2}$---(3)

Replace $n$ by $n-2$ to get

$a_{n-2}a_{n+2}=a_{n}a_{n-4}$---(4)

By comparing the equations (3) and (4) we notice that

$a_{n}a_{n+4}=a_{n}a_{n-4}$

$\therefore a_{n+4}=a_{n-4}$, $n\ge4$

This implies $ a_{n}=a_{n+8}$ for $n\ge0$.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K