How Can We Prove that a Recursively Defined Sequence Has a Period of 8?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The recursively defined sequence $$\left({a_n}\right)_{n=1}^\infty$$ is established to have a period of 8, defined by the relation $$a_{n+3}=\frac{1+a_{n+1}+a_{n+2}}{a_n}$$ for $n=0,1,2,\cdots$. The proof involves manipulating the recursive formula to show that $$a_{n+8}=a_n$$ for all $n \ge 0$. Key steps include eliminating fractions, rearranging terms, and demonstrating that $$a_{n}a_{n+4}=a_{n}a_{n-4}$$ leads to the conclusion that periodicity holds.

PREREQUISITES
  • Understanding of recursive sequences and their properties
  • Familiarity with polynomial roots and characteristic equations
  • Knowledge of manipulating algebraic expressions and equations
  • Basic concepts of equilibrium points in difference equations
NEXT STEPS
  • Study the characteristics of nonlinear difference equations
  • Learn about periodic solutions in dynamical systems
  • Explore the implications of equilibrium points in recursive sequences
  • Investigate the methods for proving periodicity in sequences
USEFUL FOR

Mathematicians, students studying difference equations, and researchers interested in dynamical systems will benefit from this discussion on proving periodicity in recursively defined sequences.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Suppose $$\left({a_n}\right)_{n=1}^\infty$$ be recursively defined by $a_0>1$, $a_1>0$ and $a_2>0$,

$$a_{n+3}=\frac{1+a_{n+1}+a_{n+2}}{a_n}$$ for $n=0,1,2,\cdots$,

Show that $a_n$ has period of 8.
 
Mathematics news on Phys.org
Re: Show that a_{n+8}=a_n

anemone said:
Suppose $$\left({a_n}\right)_{n=1}^\infty$$ be recursively defined by $a_0>1$, $a_1>0$ and $a_2>0$,

$$a_{n+3}=\frac{1+a_{n+1}+a_{n+2}}{a_n}$$ for $n=0,1,2,\cdots$,

Show that $a_n$ has period of 8.

In the paper of Lothar Berg 'Nonlinear difference equation with periodic solutions' [2006] it is explained that given a difference equation like... $\displaystyle x_{n+1} = f(x_{n},x_{n-1},...,x_{n-k})\ (1)$... it admits a periodic solution of periodo p if it exists an equilibrium point $x^{*}$ such that... $\displaystyle x^{*} = f(x^{*},x^{*},...,x^{*})\ (2)$... and, defining... $\displaystyle f_{i}= \frac{\partial f}{\partial u_{i}} (x^{*},x^{*},...,x^{*})\ (3)$

... all the rouths of the polynomial... $\displaystyle \lambda^{k+1} - f_{0} \lambda^{k} - ... - f_{k-1} \lambda - f_{k}\ (4)$

... are simple p-th routh of unity. In Your case is...

$\displaystyle x_{n+1}= \frac{1 + x_{n} + x_{n-1}}{x_{n-2}}\ (5)$

... the characteristic polynomial is...

$\displaystyle \lambda^{3} - \frac{1}{x^{*}}\ (\lambda^{2} + \lambda) + 1\ (6)$ ... with $\displaystyle x^{*} = 1 \pm \sqrt{2}$ and the roths of (6) are... $\displaystyle \lambda = -1, \lambda = \frac {1-i}{\sqrt{2}}, \lambda = \frac{1+i}{\sqrt{2}}, \lambda = - \frac{1+i}{\sqrt{2}}, \lambda =- \frac{1-i}{\sqrt{2}}\ (7)$ ... so that the periodicity p=8 is demonstrated...

Kind regards

$\chi$ $\sigma$

P.S. the Lotahr's article is ...

http://ftp.math.uni-rostock.de/pub/romako/heft61/lothar.pdf

 
Last edited:
Re: Show that a_{n+8}=a_n

chisigma said:
In the paper of Lothar Berg 'Nonlinear difference equation with periodic solutions' [2006] it is explained that given a difference equation like... $\displaystyle x_{n+1} = f(x_{n},x_{n-1},...,x_{n-k})\ (1)$... it admits a periodic solution of periodo p if it exists an equilibrium point $x^{*}$ such that... $\displaystyle x^{*} = f(x^{*},x^{*},...,x^{*})\ (2)$... and, defining... $\displaystyle f_{i}= \frac{\partial f}{\partial u_{i}} (x^{*},x^{*},...,x^{*})\ (3)$

... all the rouths of the polynomial... $\displaystyle \lambda^{k+1} - f_{0} \lambda^{k} - ... - f_{k-1} \lambda - f_{k}\ (4)$

... are simple p-th routh of unity. In Your case is...

$\displaystyle x_{n+1}= \frac{1 + x_{n} + x_{n-1}}{x_{n-2}}\ (5)$

... the characteristic polynomial is...

$\displaystyle \lambda^{3} - \frac{1}{x^{*}}\ (\lambda^{2} + \lambda) + 1\ (6)$ ... with $\displaystyle x^{*} = 1 \pm \sqrt{2}$ and the roths of (6) are... $\displaystyle \lambda = -1, \lambda = \frac {1-i}{\sqrt{2}}, \lambda = \frac{1+i}{\sqrt{2}}, \lambda = - \frac{1+i}{\sqrt{2}}, \lambda =- \frac{1-i}{\sqrt{2}}\ (7)$ ... so that the periodicity p=8 is demonstrated...

Kind regards

$\chi$ $\sigma$

P.S. the Lotahr's article is ...

http://ftp.math.uni-rostock.de/pub/romako/heft61/lothar.pdf



Hi chisigma,

Thanks for participating and thanks for the pdf link too, that's a wonderful reading material to say the least...

I'll only post the solution to this problem later, I just feel there are others who still want to attempt to it. :D
 
Re: Show that a_{n+8}=a_n

Here is the solution provided by others which I think is worth sharing at MHB:

We're given $$a_{n+3}=\frac{1+a_{n+1}+a_{n+2}}{a_n}$$ for $n=0,1,2,\cdots$

First we multiply the equation by $a_n$ to eliminate the fraction and get

$a_{n+3}a_{n}=1+a_{n+1}+a_{n+2}$---(1)

If we replace $n$ by $n-1$, the above equation becomes

$a_{n+2}a_{n-1}=1+a_{n}+a_{n+1}$---(2)

And subtracting the equations (1) and (2) yields

$a_{n+3}a_{n}-a_{n+2}a_{n-1}=a_{n+2}-a_{n}$

Collecting the like terms and factoring out the common factor we now have

$a_{n}(1+a_{n+3})=a_{n+2}(1+a_{n-1})$

Adding the term $a_{n}a_{n+2}$ to both sides we get

$a_{n}(1+a_{n+2}+a_{n+3})=a_{n+2}(1+a_{n-1}+a_{n})$---(*)

And by applying the given recursive equation to (*) we obtain

$a_{n}a_{n+1}a_{n+4}=a_{n+2}a_{n+1}a_{n-2}$

$a_{n}a_{n+4}=a_{n+2}a_{n-2}$---(3)

Replace $n$ by $n-2$ to get

$a_{n-2}a_{n+2}=a_{n}a_{n-4}$---(4)

By comparing the equations (3) and (4) we notice that

$a_{n}a_{n+4}=a_{n}a_{n-4}$

$\therefore a_{n+4}=a_{n-4}$, $n\ge4$

This implies $ a_{n}=a_{n+8}$ for $n\ge0$.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
951
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K