MHB How Can We Prove that a Recursively Defined Sequence Has a Period of 8?

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Suppose $$\left({a_n}\right)_{n=1}^\infty$$ be recursively defined by $a_0>1$, $a_1>0$ and $a_2>0$,

$$a_{n+3}=\frac{1+a_{n+1}+a_{n+2}}{a_n}$$ for $n=0,1,2,\cdots$,

Show that $a_n$ has period of 8.
 
Mathematics news on Phys.org
Re: Show that a_{n+8}=a_n

anemone said:
Suppose $$\left({a_n}\right)_{n=1}^\infty$$ be recursively defined by $a_0>1$, $a_1>0$ and $a_2>0$,

$$a_{n+3}=\frac{1+a_{n+1}+a_{n+2}}{a_n}$$ for $n=0,1,2,\cdots$,

Show that $a_n$ has period of 8.

In the paper of Lothar Berg 'Nonlinear difference equation with periodic solutions' [2006] it is explained that given a difference equation like... $\displaystyle x_{n+1} = f(x_{n},x_{n-1},...,x_{n-k})\ (1)$... it admits a periodic solution of periodo p if it exists an equilibrium point $x^{*}$ such that... $\displaystyle x^{*} = f(x^{*},x^{*},...,x^{*})\ (2)$... and, defining... $\displaystyle f_{i}= \frac{\partial f}{\partial u_{i}} (x^{*},x^{*},...,x^{*})\ (3)$

... all the rouths of the polynomial... $\displaystyle \lambda^{k+1} - f_{0} \lambda^{k} - ... - f_{k-1} \lambda - f_{k}\ (4)$

... are simple p-th routh of unity. In Your case is...

$\displaystyle x_{n+1}= \frac{1 + x_{n} + x_{n-1}}{x_{n-2}}\ (5)$

... the characteristic polynomial is...

$\displaystyle \lambda^{3} - \frac{1}{x^{*}}\ (\lambda^{2} + \lambda) + 1\ (6)$ ... with $\displaystyle x^{*} = 1 \pm \sqrt{2}$ and the roths of (6) are... $\displaystyle \lambda = -1, \lambda = \frac {1-i}{\sqrt{2}}, \lambda = \frac{1+i}{\sqrt{2}}, \lambda = - \frac{1+i}{\sqrt{2}}, \lambda =- \frac{1-i}{\sqrt{2}}\ (7)$ ... so that the periodicity p=8 is demonstrated...

Kind regards

$\chi$ $\sigma$

P.S. the Lotahr's article is ...

http://ftp.math.uni-rostock.de/pub/romako/heft61/lothar.pdf

 
Last edited:
Re: Show that a_{n+8}=a_n

chisigma said:
In the paper of Lothar Berg 'Nonlinear difference equation with periodic solutions' [2006] it is explained that given a difference equation like... $\displaystyle x_{n+1} = f(x_{n},x_{n-1},...,x_{n-k})\ (1)$... it admits a periodic solution of periodo p if it exists an equilibrium point $x^{*}$ such that... $\displaystyle x^{*} = f(x^{*},x^{*},...,x^{*})\ (2)$... and, defining... $\displaystyle f_{i}= \frac{\partial f}{\partial u_{i}} (x^{*},x^{*},...,x^{*})\ (3)$

... all the rouths of the polynomial... $\displaystyle \lambda^{k+1} - f_{0} \lambda^{k} - ... - f_{k-1} \lambda - f_{k}\ (4)$

... are simple p-th routh of unity. In Your case is...

$\displaystyle x_{n+1}= \frac{1 + x_{n} + x_{n-1}}{x_{n-2}}\ (5)$

... the characteristic polynomial is...

$\displaystyle \lambda^{3} - \frac{1}{x^{*}}\ (\lambda^{2} + \lambda) + 1\ (6)$ ... with $\displaystyle x^{*} = 1 \pm \sqrt{2}$ and the roths of (6) are... $\displaystyle \lambda = -1, \lambda = \frac {1-i}{\sqrt{2}}, \lambda = \frac{1+i}{\sqrt{2}}, \lambda = - \frac{1+i}{\sqrt{2}}, \lambda =- \frac{1-i}{\sqrt{2}}\ (7)$ ... so that the periodicity p=8 is demonstrated...

Kind regards

$\chi$ $\sigma$

P.S. the Lotahr's article is ...

http://ftp.math.uni-rostock.de/pub/romako/heft61/lothar.pdf



Hi chisigma,

Thanks for participating and thanks for the pdf link too, that's a wonderful reading material to say the least...

I'll only post the solution to this problem later, I just feel there are others who still want to attempt to it. :D
 
Re: Show that a_{n+8}=a_n

Here is the solution provided by others which I think is worth sharing at MHB:

We're given $$a_{n+3}=\frac{1+a_{n+1}+a_{n+2}}{a_n}$$ for $n=0,1,2,\cdots$

First we multiply the equation by $a_n$ to eliminate the fraction and get

$a_{n+3}a_{n}=1+a_{n+1}+a_{n+2}$---(1)

If we replace $n$ by $n-1$, the above equation becomes

$a_{n+2}a_{n-1}=1+a_{n}+a_{n+1}$---(2)

And subtracting the equations (1) and (2) yields

$a_{n+3}a_{n}-a_{n+2}a_{n-1}=a_{n+2}-a_{n}$

Collecting the like terms and factoring out the common factor we now have

$a_{n}(1+a_{n+3})=a_{n+2}(1+a_{n-1})$

Adding the term $a_{n}a_{n+2}$ to both sides we get

$a_{n}(1+a_{n+2}+a_{n+3})=a_{n+2}(1+a_{n-1}+a_{n})$---(*)

And by applying the given recursive equation to (*) we obtain

$a_{n}a_{n+1}a_{n+4}=a_{n+2}a_{n+1}a_{n-2}$

$a_{n}a_{n+4}=a_{n+2}a_{n-2}$---(3)

Replace $n$ by $n-2$ to get

$a_{n-2}a_{n+2}=a_{n}a_{n-4}$---(4)

By comparing the equations (3) and (4) we notice that

$a_{n}a_{n+4}=a_{n}a_{n-4}$

$\therefore a_{n+4}=a_{n-4}$, $n\ge4$

This implies $ a_{n}=a_{n+8}$ for $n\ge0$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
4
Views
3K
Replies
1
Views
1K
Replies
15
Views
2K
Replies
11
Views
2K
Replies
1
Views
1K
Replies
2
Views
3K
Back
Top