How Can We Prove the Inequality of Rank Matrices?

Click For Summary
SUMMARY

The discussion focuses on proving the inequalities $\text{Rank}(AB) \leq \text{Rank}(A)$ and $\text{Rank}(AB) \leq \text{Rank}(B)$ for matrices $A \in \mathbb{K}^{p \times q}$ and $B \in \mathbb{K}^{q \times r}$. The proof is established by demonstrating that the column space of the product $AB$ is contained within the column space of $A$, and the row space of $AB$ is contained within the row space of $B$. The conclusion is that since $C(AB) \subseteq C(A)$ and $R(AB) \subseteq R(B)$, it follows that the ranks of the products are less than or equal to the ranks of the individual matrices.

PREREQUISITES
  • Understanding of matrix rank and linear combinations
  • Familiarity with column space and row space concepts
  • Knowledge of linear algebra terminology and notation
  • Basic proficiency in manipulating matrix equations
NEXT STEPS
  • Study the relationship between row rank and column rank in linear algebra
  • Explore the implications of the Rank-Nullity Theorem
  • Learn about the properties of matrix multiplication and its effects on rank
  • Investigate applications of rank inequalities in solving linear systems
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, as well as educators seeking to clarify concepts related to matrix rank and its implications in various mathematical contexts.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $\mathbb{K}$ be a fiels and $A\in \mathbb{K}^{p\times q}$ and $B\in \mathbb{K}^{q\times r}$.
I want to show that $\text{Rank}(AB)\leq \text{Rank}(A)$ and $\text{Rank}(AB)\leq \text{Rank}(B)$.

We have that every column of $AB$ is a linear combination of the columns of $A$, or not? (Wondering)

What can we do to show the inequality? (Wondering)
 
Physics news on Phys.org
It follows from the fact that the column space of $AB$ is contained in the column space of $A$, and the row space of $AB$ is contained in the row space of $B$. I'll prove the latter. Given $y$ in the row space of $AB$, there is a row vector $x$ such that $y=xAB$. The vector $z := xA$ is a row vector such that $y=zB$. Thus, $y$ belongs to the row space of $B$.
 
Euge said:
Given $y$ in the row space of $AB$, there is a row vector $x$ such that $y=xAB$.

The row space of $AB$ contains the rows of $AB$ that spans the rows, right? (Wondering)
Then $y\in R(AB)$ means that we can write $y$ a linear combination of the vectors of $R(AB)$, right? (Wondering)
We can write this as $y=xAB$ because:
Let $x^T=(x_1, x_2, \ldots , x_{n-1}, x_n)$, then we have that $$xAB=\left (x_1 \cdot (1. \text{ row of }AB))+(x_2 \cdot (2. \text{ row of }AB))+\ldots +(x_{n-1} \cdot ((n-1). \text{ row of }AB))+(x_n \cdot (n. \text{ row of }AB))\right )$$ where some of the $x_i$'s might be $0$.
Is this correct? (Wondering)
 
It looks good, although $x^T$ should just be written as $x$, since $x$ is already a row vector.
 
Euge said:
It looks good, although $x^T$ should just be written as $x$, since $x$ is already a row vector.

Ah ok!

Let $y\in C(AB)$ then there is a column vector $x$ such that $y=ABx$. The vector $z:Bx$ is a column vector such that $y=Az$. Therefore, $y$ belongs to the column space of $A$.

Is this correct? (Wondering) Having that $C(AB)\subseteq C(A)$ and $R(AB)\subseteq R(B)$, how exactly does it imply that $\text{Rank}(AB)\leq \text{Rank}(A)$ and $\text{Rank}(AB)\leq \text{Rank}(B)$ ? (Wondering)
 
Your work is correct. To finish the argument, use the fact that the row rank of a matrix equals its column rank.
 
Euge said:
Your work is correct. To finish the argument, use the fact that the row rank of a matrix equals its column rank.

So, we have that $\text{Rank}(AB)=|C(AB)|=|R(AB)|$ and $\text{Rank}(A)=|C(A)|$ and $\text{Rank}(B)=|R(B)|$, right? (Wondering)

Since $C(AB)\subseteq C(A)$, it follows that $|C(AB)|\leq |C(A)|$, or not? (Wondering)

And since $R(AB)\subseteq R(B)$, it follows that $|R(AB)|\leq |R(B)|$.

Therefore, we have that $\text{Rank}(AB)=|C(AB)|\leq |C(A)|=\text{Rank}(A)$ and $\text{Rank}(AB)=|R(AB)|\leq |R(B)|=\text{Rank}(B)$.

Is this correct? (Wondering)
 
Looks great!
 
Thank you very much! (Smile)
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K