MHB How Can You Solve the Scaled Transport Equation in the First Quadrant?

  • Thread starter Thread starter onie mti
  • Start date Start date
  • Tags Tags
    Transport
onie mti
Messages
42
Reaction score
0
am given a scaled transport equation
ut(x,t) + ux(x,t)=0 x>0; t>0
u(x,0)=0 x>0
u(0,t)= sint t>0

how can I begin to find a solution in the quadrant {x.0,t>0} to this problem, am really struglling:(
 
Physics news on Phys.org
onie mti said:
am given a scaled transport equation
ut(x,t) + ux(x,t)=0 x>0; t>0
u(x,0)=0 x>0
u(0,t)= sint t>0

how can I begin to find a solution in the quadrant {x.0,t>0} to this problem, am really struglling:(

You have to use the method: separation of variables.
 
onie mti said:
am given a scaled transport equation
ut(x,t) + ux(x,t)=0 x>0; t>0
u(x,0)=0 x>0
u(0,t)= sint t>0

how can I begin to find a solution in the quadrant {x.0,t>0} to this problem, am really struglling:(

A PDE of the form...

$\displaystyle u_{t} + c\ u_{x} = 0\ (1)$

... can be solved with the auxiliary variables $\xi= x + c\ t$ and $\eta = x - c\ t$. Applying the chain rule You arrive to the equivalent PDE...

$\displaystyle 2\ c\ \frac{\partial{u}}{\partial{\xi}} = 0\ (2)$

... the solution of which is...

$\displaystyle u = f(\eta) = f(x - c\ t)\ (3)$

... where $f(*,*) \in C^{1}$ is arbitrary. In Your case is...

$\displaystyle u(x,t)= - \sin (x - t)\ (4)$

Kind regards

$\chi$ $\sigma$
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top