MHB How do I apply the Frobenius method to solve Hermite's ODE?

  • Thread starter Thread starter ognik
  • Start date Start date
  • Tags Tags
    Method
ognik
Messages
626
Reaction score
2
Hermite's ODE is $y'' - 2xy' + 2\alpha y = 0$

Let $y = \sum_{\lambda = 0}^{\infty} {a}_{\lambda} x^{k+\lambda}, y' = \sum a_{\lambda} (k+\lambda)x^{k+\lambda-1}, y'' = \sum a_\lambda (k+\lambda)(k+\lambda-1)x^{k+\lambda-2}$

I get the indicial eqtn of k(k-1) = 0, therefore k = 0 or 1. Lowest power of x again, let's me choose $a_1=0$

Then using a dummy variable j to make all powers of x equal, then equating coefficients, I get:

$ a_{j+2}(k+j+2)(k+j+1) -2a_{j+1}(k+j+1) + 2\alpha a_j = 0$

But the books answer shows me that they found the 2nd term to be $2a_{j}(k+j+1) $ - I can't find what I've done wrong?
 
Physics news on Phys.org
Found my mistake, I forgot to multiply the 2nd term by x, so the correct eqtn is:

$ a_{j+2}(k+j+2)(k+j+1) -2a_{j}(k+j) + 2\alpha a_j = 0$
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top