High School How do mathematicians come up with new proofs?

  • Thread starter Thread starter docnet
  • Start date Start date
  • Tags Tags
    Proofs
Click For Summary
Mathematicians often arrive at new proofs through a combination of deep prior knowledge and intense focus on a problem, as illustrated by Yitang Zhang's experience with bounded gaps between primes. While the final proof may appear to be a product of individual genius, it typically builds upon extensive prior research and discussions with peers. The process involves numerous intricate steps that may not seem connected at first, but each contributes to the overall logic leading to the conclusion. Insights can emerge suddenly after prolonged contemplation, but the detailed work required to formalize these ideas is substantial. Ultimately, the journey to a proof is a blend of inspiration and rigorous effort, reflecting the complexity of mathematical discovery.
docnet
Messages
796
Reaction score
489
TL;DR
How are research-level proofs written?
I watched an interview of Yitang Zhang and he said "the way to prove a finite limit of bounded gaps between primes came to him during ##30## minutes in an afternoon", and he worked alone and did not collaborate with others during his research time.

After looking up the proof, I am in disbelief he worked alone. What baffles is how one person could write ##50## pages of what feels like an enormously complicated and difficult mathematical maze to end up with the final result "so and so is the lower limit of so and so". I can't believe that so much work is done just to prove the final result because so many independent steps are taken, that don't seem to be obviously connected to the final result at all. But every step is nit-picky, deliberate, and brings the logic one step closer to the desired result. Are there mathematicians who could even read the entire proof and understand everything in it?

My main question is, do research-level proofs in mathematics such as "bounded gaps between primes", or "Harnack's Inequality for the Ricci Flow" or "Every simply connected, closed 3-manifold is homeomorphic to the 3-sphere." really come as a result of a one-person's genius, like everyone makes them out to be?
 
Mathematics news on Phys.org
The key ideas of a proof can be summarized much shorter than the fully worked-out proof. You can give a mathematician working in that field a one-page summary (or maybe even shorter) and they'll be able to reproduce the proof based on that summary.

At the time of the "30 minutes in an afternoon", Zhang had already spent quite some time working on that problem and related problems. He had some preliminary results, he was obviously aware of the older results by his colleagues, had discussed the problem with them many times and so on. At the end of these 30 minutes he didn't have the 50 pages of proof written down, but he had an idea how to combine all these things, plus a few things he expected to be able to proof later, in a way that would lead to a proof.
 
  • Like
  • Informative
Likes suremarc, Vanadium 50 and berkeman
If one thinks hard and continuously about something for a long time, it seems that the mind works on its own unconsciously. Ideas just pop up seemingly out of nowhere. One "sees" the relationship. However working out the details may take a huge amount of work.
 
  • Like
Likes DaTario, weirdoguy, docnet and 3 others
lavinia said:
Ideas just pop up seemingly out of nowhere.

I'm not a "working scientist" example, but I had numerous situations, where the solution to a problem simply came to me during a... dream.
 
weirdoguy said:
during a... dream.
In a jacuzzi for me...

(but as pointed out before, I'd put in hundreds of hours on that problem before the final aha moment)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
7K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
3K