How Do Quantum Probability Waves Differ from Classical Waves?

Click For Summary

Discussion Overview

The discussion centers on the conceptual differences between quantum probability waves and classical waves, particularly focusing on electromagnetic (EM) waves and De Broglie waves. Participants explore the challenges of visualizing these concepts and seek intuitive analogies from classical physics.

Discussion Character

  • Exploratory
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant seeks to understand the competing forces that create wave modulation in light and De Broglie waves, drawing parallels with classical wave phenomena such as sound and water waves.
  • Another participant asserts that there is no appropriate classical picture for quantum waves, suggesting that the Schrödinger equation is a mathematical construct rather than a physical analogy.
  • A participant expresses frustration in finding an intuitive image for EM waves, questioning what is oscillating in the absence of a medium like ether.
  • One contributor emphasizes the importance of understanding EM waves as transverse waves, breaking down the electric and magnetic components to clarify concepts like polarization.
  • Another participant challenges the notion of quantum waves, stating that what is often referred to as a quantum wave is actually a solution to the Schrödinger equation and should not be conflated with classical wave concepts.
  • A later reply introduces a mathematical analogy between the propagation of laser beams and the behavior of free particles, suggesting a potential connection but acknowledging it may not be a true classical analogue.

Areas of Agreement / Disagreement

Participants express differing views on the applicability of classical analogies to quantum phenomena. While some seek intuitive images and parallels, others argue against the validity of such comparisons, indicating a lack of consensus on the topic.

Contextual Notes

Participants highlight limitations in understanding due to the absence of a classical medium for EM waves and the complexities of quantum mechanics that challenge straightforward analogies.

Feeble Wonk
Messages
241
Reaction score
44
I need help conceptually visualizing the mechanics of an EM wave, and especially a DeBroglie type of quantum "wave". I realize that it's a probability wave, but I'm trying to extrapolate a classical image to the general idea. "Normal" force waves result from modulations and/or imbalances between competing forces on a system within the constraints of the system in question. For example, as sound waves travel through a medium, the momentum of the particles and the electromagnetic repulsion forces the waves forward into modulating high and low density crests and troughs. Water waves also occur as the particle momentum and EM repulsive forces displace the water as allowed by the competing force of gravity, producing the modulation of the wave. Tensile forces and momentum modulation in a vibrating guitar string are relatively easy to imagine. These descriptions are all obviously over simplifications, but the general ideas are intuitively easy to visualize. But what are the competing/constraining factors that produce the "wave" modulation of light or DeBroglie particle waves? Can anyone help me with an intuitive image here?
 
Physics news on Phys.org
The Schrödinger equation.
I don't think there is an appropriate classical picture.
 
  • Like
Likes   Reactions: bhobba
Thanks. But aside from the mathematical construct of the state vector...? Perhaps an intuitive classical image of a De Broglie type of particle wave was too much to ask. If I limit my question to an electromagnetic "wave"... there is no ether, so what is it that is "waving"? What is oscillating, and why?
 
I know that the wave length is correlated to the energy content of the photon. That's not what I'm going for. I'm simply noting that classical waves are intuitively logical as to what is causing the wave mechanics, and was hoping for a similar idea with regard to EM radiation. It's just a concept I've always struggled with.
 
I've struggled with it too, Feeble. From our human "perceptual" position, it just "seems" like a wave needs a medium (like water or air). However, as I understand them, there is no medium for EM waves. Furthermore, it's a mistake to think of them as a particle that is vibrating.

It helps me to remember that it's best to think of them as transverse waves (like an ocean wave, and not like a sound wave which is is longitudinal (compressive and expansive)). Also, it helps me to break apart the electrical (E) component from the magnetic (B) component. All by itself, the electrical component can be decomposed into an X axis and a Y axis component (assuming that Z is the direction of progression). Focusing just on the E component (and it's X and Y components) allows me to understand linear, elliptical, and circular polarization as phase discrepancies between the X and Y components. And, even when the X and Y components are "in phase", the magnitude of the X component to the Y component gives the angle of the linear polarization.

Also, there are some excellent YouTube videos that illustrate this. However, I'll let you find them.

Best of Luck,
Elroy
 
Feeble Wonk said:
Iand especially a DeBroglie type of quantum "wave". I realize that it's a probability wave, but I'm trying to extrapolate a classical image to the general idea.

There is no such thing as a quantum wave.

What is usually meant is the free particle solution to Schroedinger's equation which is wave-like (see 5.3):
http://www.physics.ox.ac.uk/Users/smithb/website/coursenotes/qi/QILectureNotes3.pdf

It not classical - forget such ideas - they are wrong.

Thanks
Bill
 
Feeble Wonk said:
Thanks. But aside from the mathematical construct of the state vector...? Perhaps an intuitive classical image of a De Broglie type of particle wave was too much to ask. If I limit my question to an electromagnetic "wave"... there is no ether, so what is it that is "waving"? What is oscillating, and why?

The EM field.

The reason the EM field exists is so energy and momentum is conserved as required by Noethers theorem. Something is required for it to be stored - that is the field. This is implied by certain no go theorems worked out by Wigner.

Thanks
Bill
 
mfb said:
The Schrödinger equation.
I don't think there is an appropriate classical picture.

Remarkably, there kind of is!

If you take the optical Helmholtz equation,
\frac{\partial^{2}A}{\partial x^{2}}+\frac{\partial^{2}A}{\partial y^{2}}+\frac{\partial^{2}A}{\partial z^{2}}=-k^{2} A,
and use the small angle approximation (so as to describe laser beams propagating along the z-axis), you get the paraxial helmholtz equation
-\frac{1}{2}\big(\frac{\partial^{2}A}{\partial x^{2}} +\frac{\partial^{2}A}{\partial y^{2}}\big) = i k \frac{\partial A}{\partial z}.

This is mathematically identical to the Schrödinger equation (up to constants and such, and switching z for time) for a free particle moving in two dimensions
-\frac{\hbar^{2}}{2m}\big(\frac{\partial^{2}\Psi}{\partial x^{2}} +\frac{\partial^{2}\Psi}{\partial y^{2}}\big) = i \hbar \frac{\partial \Psi}{\partial t}

In short, how a laser beam spreads as a function of propagated distance z, has the same form as a 2D free particle evolving in time. If you add a spatially varying index of refraction, you can have an effective potential energy too, giving you a kind of optical Schrödinger equation. It's useful for describing light in fiber optics.

It's maybe not a truly classical analogue, but it's food for thought.
 
Last edited:
  • Like
Likes   Reactions: mfb, Greg Bernhardt and bhobba

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 14 ·
Replies
14
Views
6K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K