MHB How do we solve a quadratic inequality with multiple factors?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Quadratic
AI Thread Summary
To solve the quadratic inequality (x^4)(x - 2)(x - 16) ≥ 0, critical points are identified by setting each factor to zero, resulting in x = 0, x = 2, and x = 16. The root x = 0 has an even multiplicity, meaning the sign of the expression remains unchanged across this point, while the others have odd multiplicities, indicating a sign change. Testing intervals around the critical points reveals that the solution set is (-infinity, 2] U [16, infinity). The approach of plotting the critical points on a number line and testing intervals is confirmed as correct. This method effectively identifies where the inequality holds true.
mathdad
Messages
1,280
Reaction score
0
This is the last quadratic inequality problem (for now) before moving on to Chapter 3, Section 3.1 THE DEFINITION OF A FUNCTION.

Section 2.6
Question 30

Solve the quadratic inequality.

(x^4)(x - 2)(x - 16) ≥ 0

Do I set each factor to 0 and solve for x? The values of x are then plotted on the number line for testing.

Correct?
 
Mathematics news on Phys.org
RTCNTC said:
This is the last quadratic inequality problem (for now) before moving on to Chapter 3, Section 3.1 THE DEFINITION OF A FUNCTION.

Section 2.6
Question 30

Solve the quadratic inequality.

(x^4)(x - 2)(x - 16) ≥ 0

Do I set each factor to 0 and solve for x? The values of x are then plotted on the number line for testing.

Correct?

Yes, observe that the root $x=0$ is of even multiplicity (4), and so the sign of the expression will not change across this root. The others are of odd multiplicity (1) and so the sign will change across those roots.
 
I will work on this tomorrow. Working right now.
 
(x^4)(x - 2)(x - 16) ≥ 0

Our critical points are x = 0, x = 2 and x = 16.

I can see that our critical points are also included.

<-------(0)--------(2)--------(16)------>

For (-infinity, 0), let x = -1. True statement.

For (0, 2), let x = 1. True statement.

For (2, 16), let x = 3. False statement.

For (16, infinity), let x = 4. True statement.

Solution:

(-infinity, 2] U [16, infinity)

Correct?
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top