How Do You Calculate Loss Percentage in a Quadratic Equation Problem?

Click For Summary
SUMMARY

The discussion revolves around calculating the loss percentage in a quadratic equation problem involving the sale of a horse for $72. The loss percentage is defined as one-eighth of the cost price, denoted as $C$. Various interpretations of the loss percentage calculation are explored, including loss based on cost price and selling price. The most viable solution suggests using the equation derived from the assumption that the loss percentage relates to the selling price, leading to a quadratic equation that can be solved for $C$.

PREREQUISITES
  • Understanding of basic algebraic equations
  • Familiarity with percentage calculations
  • Knowledge of quadratic equations
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Study how to solve quadratic equations using the quadratic formula
  • Learn about percentage loss and gain calculations in financial contexts
  • Explore algebraic manipulation techniques for solving equations
  • Investigate real-world applications of quadratic equations in profit and loss scenarios
USEFUL FOR

Students studying algebra, educators teaching quadratic equations, and anyone interested in financial mathematics and percentage calculations.

NotaMathPerson
Messages
82
Reaction score
0
A person, selling a horse for $72, finds that his loss per cent is one-eight of the number of dollars that he paid for the horse; what was the cost price?

Can anybody explain the part " loss per cent" and how do I express that algebraically. Thanks!
 
Mathematics news on Phys.org
NotaMathPerson said:
A person, selling a horse for $72, finds that his loss per cent is one-eight of the number of dollars that he paid for the horse; what was the cost price?

Can anybody explain the part " loss per cent" and how do I express that algebraically. Thanks!

Hey NotaMathPerson! ;)

That is quite ambiguous.

Suppose the cost price is $C$, then his loss is $C - 72$.

It could mean:
1. His loss per cent of the cost price (which would be my expectation). That would mean that we have $\frac{C-72}{100C} = \frac C 8$.
2. His loss per cent of the selling price. That would mean that we have $\frac{C-72}{7200} = \frac C 8$.
3. If there is a typo, his loss percentage of the cost price, meaning $\frac{C-72}{C} = \frac C 8$.
4. If there is a typo, his loss percentage of the selling price, meaning $\frac{C-72}{72} = \frac C 8$.

Options 1 and 3 do not have a solution, so for now I'm inclined to assume we're talking about option 2, but seeing the result I wouldn't be surprised if option 4 was intended.
Anyway, how about solving it for option 2? (Wondering)

EDIT: I have just noticed that your title mentions solving a quadratic equation.
That suggests that option 1 is intended after all...
 
Looks to me like your teacher is getting ready to show the class
that a percentage is really a fraction; like 20% = 20/100 = 1/5.

With your problem: 1/8 = .125, or 12.5%.
82.28 - .125*82.22 = 82.28 - 10.28 = 72.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
4K
Replies
1
Views
1K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
7K
Replies
4
Views
3K