High School How do you evaluate $g(\sqrt[4]{2014})$ for a given function $g(x)$?

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
To evaluate $g(\sqrt[4]{2014})$, the function $g(x)$ is defined as $g(x)=\sqrt[3]{\frac{x^3-3x+(x^2-1)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-(x^2-1)\sqrt{x^2-4}}{2}}$. The evaluation involves substituting $x$ with $\sqrt[4]{2014}$ and simplifying the expression. Key steps include calculating $x^2$, $x^3$, and the square root term. The final result provides the value of $g(\sqrt[4]{2014})$, demonstrating the application of algebraic manipulation and cube root properties. The discussion highlights the methodical approach to evaluating complex functions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $g(\sqrt[4]{2014})$ for a given function $g(x)=\sqrt[3]{\dfrac{x^3-3x+(x^2-1)\sqrt{x^2-4}}{2}}+\sqrt[3]{\dfrac{x^3-3x-(x^2-1)\sqrt{x^2-4}}{2}}$.

--------------------
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions::)

1. mente oscura
2. lfdahl
3. Opalg
4. MarkFL
5. magneto

Solution by Opalg:
The only plausible way to handle that horrendous-looking function $g$ would be if the expressions under the cube root signs are actually equal to the cube of something simpler, which looks as though it would have to be of the form $ax + b\sqrt{x^2 - 4}$ for some constants $a$, $b$. So the most promising thing is to look at $$\begin{aligned}\bigl( ax + b\sqrt{x^2 - 4}\bigr)^3 &= a^3x^3 + 3a^2bx^2\sqrt{x^2 - 4} + 3ab^2x(x^2-4) + b^3(x^2-4)\sqrt{x^2 - 4} \\ &= (a^3 + 3ab^2)x^3 - 12ab^2x + \bigl((3a^2b+b^3)x^2 - 4b^3\bigr)\sqrt{x^2 - 4}.\end{aligned}$$ If we compare the coefficients in that expression with those in $\dfrac{x^3-3x + (x^2-4)\sqrt{x^2 - 4}}2$, we get the conditions $$a^3+3ab^2 = \tfrac12, \qquad -12ab^2 = -\tfrac32,\qquad 3a^2b+b^3 = \tfrac12, \qquad -4b^3 = -\tfrac12.$$ The last of those conditions gives $b^3 = \frac18$, or $b = \frac12$, and the other three conditions are then all satisfied if we take $a = \frac12$ also. Therefore $$\sqrt[3]{\frac{x^3-3x + (x^2-4)\sqrt{x^2 - 4}}2} = \frac{x + \sqrt{x^2-4}}2.$$ If instead of the positive square root $\sqrt{x^2-4}$ we take the negative root $-\sqrt{x^2-4}$, then we get $$\sqrt[3]{\frac{x^3-3x - (x^2-4)\sqrt{x^2 - 4}}2} = \frac{x - \sqrt{x^2-4}}2.$$ Now add the two cube roots together to get $g(x) = \dfrac{x + \sqrt{x^2-4}}2 + \dfrac{x - \sqrt{x^2-4}}2 = x.$ So $g(x) = x$, and in particular $g\bigl(\sqrt[4]{2014}\bigr) = \sqrt[4]{2014} \approx 6.699.$

Solution by MarkFL:
Let:

$$g_1(x)=\sqrt[3]{\frac{x^3-3x+(x^2-1)\sqrt{x^2-4}}{2}}$$

$$g_2(x)=\sqrt[3]{\frac{x^3-3x-(x^2-1)\sqrt{x^2-4}}{2}}$$

Thus, we have:

$$g(x)=g_1(x)+g_2(x)$$

Cubing both sides, we obtain:

$$g^3(x)=g_1^3(x)+3g_1^2(x)g_2(x)+3g_1(x)g_2^2(x)+g_2^3(x)$$

We may arrange this as:

$$g^3(x)=g_1^3(x)+g_2^3(x)+3g_1(x)g_2(x)\left(g_1(x)+g_2(x) \right)$$

Now, we find:

$$g_1^3(x)+g_2^3(x)=\frac{x^3-3x+(x^2-1)\sqrt{x^2-4}}{2}+\frac{x^3-3x-(x^2-1)\sqrt{x^2-4}}{2}=x^3-3x$$

$$g_1(x)g_2(x)=\sqrt[3]{\frac{\left(x^3-3x \right)^2-\left(x^2-1 \right)^2\left(x^2-4 \right)}{4}}=$$

$$\sqrt[3]{\frac{x^6-6x^4+9x^2-\left(x^4-6x^4+9x^2-4 \right)}{4}}=1$$

And given:

$$g(x)=g_1(x)+g_2(x)$$

We may then state:

$$g^3(x)=x^3-3x+3g(x)$$

$$g^3(x)-3g(x)=x^3-3x$$

Observing that the domain of $g$ is $2\le x$, we may then conclude that on this domain, we must have:

$$g(x)=x$$

Hence:

$$g\left(\sqrt[4]{2014} \right)=\sqrt[4]{2014}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K