How Do You Identify Scalar Homomorphisms in a Matrix Algebra?

Click For Summary

Discussion Overview

The discussion revolves around identifying scalar homomorphisms in a specific set of 2x2 matrices defined over complex numbers. Participants explore the basis of the matrix algebra and how to derive the scalar homomorphisms from it, addressing both theoretical and practical aspects of the problem.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants propose a basis for the set of 2x2 matrices, with matrices defined as M_1, M_2, and M_3, and express the need to find scalar homomorphisms from this basis.
  • Others suggest an alternative basis and express the coordinates of a general matrix in terms of this basis, leading to a formulation of scalar homomorphisms in matrix form.
  • Some participants note that two of the basis matrices are idempotent, leading to implications for the values of the homomorphisms.
  • There is a challenge regarding the assertion that the sum of two basis matrices equals the identity matrix, with some participants expressing confusion over the definitions of their bases.
  • One participant acknowledges a misreading of the question and suggests a correction to their previous claims about the basis matrices.
  • Another participant inquires about the derivation of the specific scalar homomorphisms that map to the top left and bottom right elements of the matrices.
  • Some participants discuss the conditions under which the maps preserve multiplication and inverses, leading to the identification of valid scalar homomorphisms.

Areas of Agreement / Disagreement

Participants express differing views on the appropriate basis for the matrix algebra and the implications of their definitions on the scalar homomorphisms. There is no consensus on the correct basis or the interpretation of certain properties, indicating ongoing debate and exploration of the topic.

Contextual Notes

Some participants highlight the dependence on specific definitions of the basis matrices and the implications of idempotency on the scalar homomorphisms. There are unresolved questions regarding the relationship between the identified homomorphisms and the structure of the matrix algebra.

Cairo
Messages
61
Reaction score
0
Let M be the set of 2x2 matrices defined by

M = {a b
0 d}

where a, b and d are complex.

I've found a basis for M but need to know how to find the set of scalar homomorphisms of M from these.

I have the basis as

M_1 = {1 0
0 1}

M_2 = {0 1
0 0}

and

M_3 = {0 0
0 1}

Any ideas?
 
Physics news on Phys.org
A more natural basis is $B_M=\{A_1,A_2,A_3\}$ with

$A_1=\begin{bmatrix}{1}&{0}\\{0}&{0}\end{bmatrix}$, $A_2=\begin{bmatrix}{0}&{1}\\{0}&{0}\end{bmatrix}$, $A_3=\begin{bmatrix}{0}&{0}\\{0}&{1}\end{bmatrix}$

The coordinates of $A=\begin{bmatrix}{a}&{b}\\{0}&{d}\end{bmatrix}$ with respect to $B_M$ are $(a,b,d)^t$ so we can express the set of all scalar homomorphisms of $M$ in the matricial form:

$f_\lambda \begin{bmatrix}{a}\\{b}\\{d}\end{bmatrix}=\lambda I_3 \begin{bmatrix}{a}\\{b}\\{d}\end{bmatrix}\quad (\lambda\in\mathbb{C})$
 
dray said:
Let M be the set of 2x2 matrices defined by

M = a b
0 d}

where a, b and d are complex.

I've found a basis for M but need to know how to find the set of scalar homomorphisms of M from these.

I have the basis as

M_1 = {1 0
0 1}

M_2 = {0 1
0 0}

and

M_3 = {0 0
0 1}

Any ideas?
It is not entirely clear from the question, but I think that you are asking how to determine all the ring (or algebra) homomorphisms from the set $M$ to the scalars. Notice that two of your three basis matrices are idempotent: $M_1^2=M_1$ and $M_3^2=M_3.$ If $f:M\to\mathbb{C}$ is a homomorphism, it follows that $\bigl(f(M_1)\bigr)^2 = f(M_1)$ and hence $f(M_1)$ must be 0 or 1. Similarly $f(M_3)$ must be 0 or 1.

Next, $M_1+M_3=I$ (the identity matrix), so $f(M_1)+f(M_3) = f(I) = 1$ (unless $f$ is the identically zero map). Thus if $f(M_1)=1$ then $f(M_3)=0$ and vice versa.

Use those facts to show that the only two homomorphisms from $M$ to the scalars are $\begin{bmatrix}a&b \\ 0&d \end{bmatrix} \mapsto a$ and $\begin{bmatrix}a&b \\ 0&d \end{bmatrix} \mapsto d.$
 
Opalg said:
It is not entirely clear from the question, but I think that you are asking how to determine all the ring (or algebra) homomorphisms from the set $M$ to the scalars. Notice that two of your three basis matrices are idempotent: $M_1^2=M_1$ and $M_3^2=M_3.$ If $f:M\to\mathbb{C}$ is a homomorphism, it follows that $\bigl(f(M_1)\bigr)^2 = f(M_1)$ and hence $f(M_1)$ must be 0 or 1. Similarly $f(M_3)$ must be 0 or 1.

Next, $M_1+M_3=I$ (the identity matrix), so $f(M_1)+f(M_3) = f(I) = 1$ (unless $f$ is the identically zero map). Thus if $f(M_1)=1$ then $f(M_3)=0$ and vice versa.

Use those facts to show that the only two homomorphisms from $M$ to the scalars are $\begin{bmatrix}a&b \\ 0&d \end{bmatrix} \mapsto a$ and $\begin{bmatrix}a&b \\ 0&d \end{bmatrix} \mapsto d.$

Thanks for this Opalg.

I can't see how $M_1+M_3=I$ for the basis matrices I have determined. The question I am tackling, is from Maddox and he specifically requests that this basis be found and then used to find the set of all scalar homomorphisms of the set M.
 
dray said:
I can't see how $M_1+M_3=I$ for the basis matrices I have determined.
$M_1+M_3 = \begin{bmatrix} 1&0 \\ 0&0 \end{bmatrix} + \begin{bmatrix} 0&0 \\ 0&1 \end{bmatrix} = \begin{bmatrix} 1&0 \\ 0&1 \end{bmatrix} = I$.
 
Opalg said:
$M_1+M_3 = \begin{bmatrix} 1&0 \\ 0&0 \end{bmatrix} + \begin{bmatrix} 0&0 \\ 0&1 \end{bmatrix} = \begin{bmatrix} 1&0 \\ 0&1 \end{bmatrix} = I$.

But my bases (which are the ones requested in the question) are

$M_1=\begin{bmatrix} 1&0 \\ 0&1 \end{bmatrix}$

$M_2=\begin{bmatrix} 0&1 \\ 0&0 \end{bmatrix}$

$M_3=\begin{bmatrix} 0&0 \\ 0&1 \end{bmatrix}$
 
dray said:
But my bases (which are the ones requested in the question) are

$M_1=\begin{bmatrix} 1&0 \\ 0&1 \end{bmatrix}$

$M_2=\begin{bmatrix} 0&1 \\ 0&0 \end{bmatrix}$

$M_3=\begin{bmatrix} 0&0 \\ 0&1 \end{bmatrix}$
So that was just me misreading the question as usual. (Blush)

Of course, the matrix that I called $M_1$ is actually $M_1-M_3$. If you repeat my solution to the problem, replacing my $M_1$ by $M_1-M_3$, then you should have a valid solution in terms of the basis requested in the question.
 
Opalg said:
So that was just me misreading the question as usual. (Blush)

Of course, the matrix that I called $M_1$ is actually $M_1-M_3$. If you repeat my solution to the problem, replacing my $M_1$ by $M_1-M_3$, then you should have a valid solution in terms of the basis requested in the question.

Thanks. That now makes more sense.

Can I ask how you got the two scalar homomorphisms that map to $a$ and $d$ respectively? I need to use these to show that the radical of $M$ is $\begin{bmatrix}0&b\\0&0\end{bmatrix}$, where $b\in\mathbb{C}$.
 
dray said:
Can I ask how you got the two scalar homomorphisms that map to $a$ and $d$ respectively?
You are looking for maps $f:M\to\mathbb{C}$ such that $f(A_1A_2) = f(A_1)f(A_2)$ for all $A_1,A_2\in M.$ If $A_1 = \begin{bmatrix}a_1&b_1 \\ 0&d_1 \end{bmatrix}$ and $A_2 = \begin{bmatrix}a_2&b_2 \\ 0&d_2 \end{bmatrix}$ then $A_1A_2 = \begin{bmatrix}a_1a_2&a_1b_2+b_1d_2 \\ 0&d_1d_2 \end{bmatrix}.$ If you stare at that equation for a while, you should notice that the maps taking the matrix to its top left or bottom right elements preserve multiplication. After a bit more calculation you can see that these maps also preserve inverses and are therefore multiplicative homomorphisms.
 
  • #10
Opalg said:
You are looking for maps $f:M\to\mathbb{C}$ such that $f(A_1A_2) = f(A_1)f(A_2)$ for all $A_1,A_2\in M.$ If $A_1 = \begin{bmatrix}a_1&b_1 \\ 0&d_1 \end{bmatrix}$ and $A_2 = \begin{bmatrix}a_2&b_2 \\ 0&d_2 \end{bmatrix}$ then $A_1A_2 = \begin{bmatrix}a_1a_2&a_1b_2+b_1d_2 \\ 0&d_1d_2 \end{bmatrix}.$ If you stare at that equation for a while, you should notice that the maps taking the matrix to its top left or bottom right elements preserve multiplication. After a bit more calculation you can see that these maps also preserve inverses and are therefore multiplicative homomorphisms.

Thanks for this. Although I an now a little confused as to why we wanted to find the numbers for $f(M_1)$ and so on. How does knowing this enable us to find the scalar homomorphism $f$?
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
4K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K