How Do You Identify Scalar Homomorphisms in a Matrix Algebra?

Click For Summary
SUMMARY

The discussion centers on identifying scalar homomorphisms in the algebra of 2x2 matrices defined by M = {a b; 0 d}, where a, b, and d are complex numbers. The basis matrices provided are M_1 = {1 0; 0 1}, M_2 = {0 1; 0 0}, and M_3 = {0 0; 0 1}. It is established that the only two scalar homomorphisms from M to the complex numbers are f(A) = a and f(A) = d, derived from the properties of the basis matrices, particularly their idempotency and the identity matrix relation.

PREREQUISITES
  • Understanding of matrix algebra, specifically 2x2 matrices.
  • Familiarity with scalar homomorphisms and their properties.
  • Knowledge of idempotent matrices and their implications in algebra.
  • Basic concepts of linear transformations and their representations.
NEXT STEPS
  • Study the properties of idempotent matrices in linear algebra.
  • Learn about algebra homomorphisms and their applications in matrix theory.
  • Explore the concept of radical in matrix algebras and its significance.
  • Investigate the relationship between matrix multiplication and scalar mappings.
USEFUL FOR

Mathematicians, algebraists, and students studying linear algebra, particularly those focusing on matrix theory and homomorphisms.

Cairo
Messages
61
Reaction score
0
Let M be the set of 2x2 matrices defined by

M = {a b
0 d}

where a, b and d are complex.

I've found a basis for M but need to know how to find the set of scalar homomorphisms of M from these.

I have the basis as

M_1 = {1 0
0 1}

M_2 = {0 1
0 0}

and

M_3 = {0 0
0 1}

Any ideas?
 
Physics news on Phys.org
A more natural basis is $B_M=\{A_1,A_2,A_3\}$ with

$A_1=\begin{bmatrix}{1}&{0}\\{0}&{0}\end{bmatrix}$, $A_2=\begin{bmatrix}{0}&{1}\\{0}&{0}\end{bmatrix}$, $A_3=\begin{bmatrix}{0}&{0}\\{0}&{1}\end{bmatrix}$

The coordinates of $A=\begin{bmatrix}{a}&{b}\\{0}&{d}\end{bmatrix}$ with respect to $B_M$ are $(a,b,d)^t$ so we can express the set of all scalar homomorphisms of $M$ in the matricial form:

$f_\lambda \begin{bmatrix}{a}\\{b}\\{d}\end{bmatrix}=\lambda I_3 \begin{bmatrix}{a}\\{b}\\{d}\end{bmatrix}\quad (\lambda\in\mathbb{C})$
 
dray said:
Let M be the set of 2x2 matrices defined by

M = a b
0 d}

where a, b and d are complex.

I've found a basis for M but need to know how to find the set of scalar homomorphisms of M from these.

I have the basis as

M_1 = {1 0
0 1}

M_2 = {0 1
0 0}

and

M_3 = {0 0
0 1}

Any ideas?
It is not entirely clear from the question, but I think that you are asking how to determine all the ring (or algebra) homomorphisms from the set $M$ to the scalars. Notice that two of your three basis matrices are idempotent: $M_1^2=M_1$ and $M_3^2=M_3.$ If $f:M\to\mathbb{C}$ is a homomorphism, it follows that $\bigl(f(M_1)\bigr)^2 = f(M_1)$ and hence $f(M_1)$ must be 0 or 1. Similarly $f(M_3)$ must be 0 or 1.

Next, $M_1+M_3=I$ (the identity matrix), so $f(M_1)+f(M_3) = f(I) = 1$ (unless $f$ is the identically zero map). Thus if $f(M_1)=1$ then $f(M_3)=0$ and vice versa.

Use those facts to show that the only two homomorphisms from $M$ to the scalars are $\begin{bmatrix}a&b \\ 0&d \end{bmatrix} \mapsto a$ and $\begin{bmatrix}a&b \\ 0&d \end{bmatrix} \mapsto d.$
 
Opalg said:
It is not entirely clear from the question, but I think that you are asking how to determine all the ring (or algebra) homomorphisms from the set $M$ to the scalars. Notice that two of your three basis matrices are idempotent: $M_1^2=M_1$ and $M_3^2=M_3.$ If $f:M\to\mathbb{C}$ is a homomorphism, it follows that $\bigl(f(M_1)\bigr)^2 = f(M_1)$ and hence $f(M_1)$ must be 0 or 1. Similarly $f(M_3)$ must be 0 or 1.

Next, $M_1+M_3=I$ (the identity matrix), so $f(M_1)+f(M_3) = f(I) = 1$ (unless $f$ is the identically zero map). Thus if $f(M_1)=1$ then $f(M_3)=0$ and vice versa.

Use those facts to show that the only two homomorphisms from $M$ to the scalars are $\begin{bmatrix}a&b \\ 0&d \end{bmatrix} \mapsto a$ and $\begin{bmatrix}a&b \\ 0&d \end{bmatrix} \mapsto d.$

Thanks for this Opalg.

I can't see how $M_1+M_3=I$ for the basis matrices I have determined. The question I am tackling, is from Maddox and he specifically requests that this basis be found and then used to find the set of all scalar homomorphisms of the set M.
 
dray said:
I can't see how $M_1+M_3=I$ for the basis matrices I have determined.
$M_1+M_3 = \begin{bmatrix} 1&0 \\ 0&0 \end{bmatrix} + \begin{bmatrix} 0&0 \\ 0&1 \end{bmatrix} = \begin{bmatrix} 1&0 \\ 0&1 \end{bmatrix} = I$.
 
Opalg said:
$M_1+M_3 = \begin{bmatrix} 1&0 \\ 0&0 \end{bmatrix} + \begin{bmatrix} 0&0 \\ 0&1 \end{bmatrix} = \begin{bmatrix} 1&0 \\ 0&1 \end{bmatrix} = I$.

But my bases (which are the ones requested in the question) are

$M_1=\begin{bmatrix} 1&0 \\ 0&1 \end{bmatrix}$

$M_2=\begin{bmatrix} 0&1 \\ 0&0 \end{bmatrix}$

$M_3=\begin{bmatrix} 0&0 \\ 0&1 \end{bmatrix}$
 
dray said:
But my bases (which are the ones requested in the question) are

$M_1=\begin{bmatrix} 1&0 \\ 0&1 \end{bmatrix}$

$M_2=\begin{bmatrix} 0&1 \\ 0&0 \end{bmatrix}$

$M_3=\begin{bmatrix} 0&0 \\ 0&1 \end{bmatrix}$
So that was just me misreading the question as usual. (Blush)

Of course, the matrix that I called $M_1$ is actually $M_1-M_3$. If you repeat my solution to the problem, replacing my $M_1$ by $M_1-M_3$, then you should have a valid solution in terms of the basis requested in the question.
 
Opalg said:
So that was just me misreading the question as usual. (Blush)

Of course, the matrix that I called $M_1$ is actually $M_1-M_3$. If you repeat my solution to the problem, replacing my $M_1$ by $M_1-M_3$, then you should have a valid solution in terms of the basis requested in the question.

Thanks. That now makes more sense.

Can I ask how you got the two scalar homomorphisms that map to $a$ and $d$ respectively? I need to use these to show that the radical of $M$ is $\begin{bmatrix}0&b\\0&0\end{bmatrix}$, where $b\in\mathbb{C}$.
 
dray said:
Can I ask how you got the two scalar homomorphisms that map to $a$ and $d$ respectively?
You are looking for maps $f:M\to\mathbb{C}$ such that $f(A_1A_2) = f(A_1)f(A_2)$ for all $A_1,A_2\in M.$ If $A_1 = \begin{bmatrix}a_1&b_1 \\ 0&d_1 \end{bmatrix}$ and $A_2 = \begin{bmatrix}a_2&b_2 \\ 0&d_2 \end{bmatrix}$ then $A_1A_2 = \begin{bmatrix}a_1a_2&a_1b_2+b_1d_2 \\ 0&d_1d_2 \end{bmatrix}.$ If you stare at that equation for a while, you should notice that the maps taking the matrix to its top left or bottom right elements preserve multiplication. After a bit more calculation you can see that these maps also preserve inverses and are therefore multiplicative homomorphisms.
 
  • #10
Opalg said:
You are looking for maps $f:M\to\mathbb{C}$ such that $f(A_1A_2) = f(A_1)f(A_2)$ for all $A_1,A_2\in M.$ If $A_1 = \begin{bmatrix}a_1&b_1 \\ 0&d_1 \end{bmatrix}$ and $A_2 = \begin{bmatrix}a_2&b_2 \\ 0&d_2 \end{bmatrix}$ then $A_1A_2 = \begin{bmatrix}a_1a_2&a_1b_2+b_1d_2 \\ 0&d_1d_2 \end{bmatrix}.$ If you stare at that equation for a while, you should notice that the maps taking the matrix to its top left or bottom right elements preserve multiplication. After a bit more calculation you can see that these maps also preserve inverses and are therefore multiplicative homomorphisms.

Thanks for this. Although I an now a little confused as to why we wanted to find the numbers for $f(M_1)$ and so on. How does knowing this enable us to find the scalar homomorphism $f$?
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
966
Replies
2
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K