How Do You Minimize Mean Square Deviation in Dice Roll Predictions?

Click For Summary
SUMMARY

The discussion focuses on minimizing the mean square deviation in predictions of the maximum value from a double roll of dice, represented by random variables X and Y. The optimal coefficients for the linear prediction model are determined as \( b^{\star} = \frac{Cov(X,Y)}{Var(X)} = \frac{1}{2} \) and \( a^{\star} = E[Y - b^{\star}X] = \frac{49}{18} \). The minimum mean square deviation is calculated as \( E[(Y - (a^{\star} + b^{\star}X))^2] = \frac{805}{648} \). The discussion emphasizes the importance of verifying results through graphical representation and logical reasoning.

PREREQUISITES
  • Understanding of joint and marginal distributions in probability theory.
  • Familiarity with covariance and variance calculations.
  • Knowledge of least squares approximation methods.
  • Ability to interpret and analyze statistical graphs.
NEXT STEPS
  • Study the properties of joint distributions in discrete random variables.
  • Learn about covariance and variance in the context of linear regression.
  • Explore graphical methods for validating statistical models.
  • Investigate advanced techniques in least squares estimation.
USEFUL FOR

Statisticians, data analysts, and mathematicians interested in predictive modeling and optimization techniques in probability theory.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

We consider a double roll of the dice. The random variable X describes the number of pips in the first roll of the dice and Y the maximum of the two numbers.
The joint distribution and the marginal distributions are given by the following table
1638584736834.png


Using :
For all $a,b\in \mathbb{R}$ it holds that $$E[(Y-a-bX)^2]\geq E[(Y-a^{\star}-b^{\star}X)^2]=Var(Y)(1-\rho^2(X,Y))$$ where $b^{\star}=\frac{Cov(X,Y)}{Var(X)}$ and $a^{\star}=E[Y-b^{\star}X]$.

Determine $a,b\in \mathbb{R}$ such that for X and Y the mean square deviation $E [(Y - (a + bX))^2]$ becomes minimal. Give also the corresponding minimum value for this mean square deviation.This term is minimal when $b=\frac{Cov(X,Y)}{Var(X)}$ and $a=E[Y-b^{\star}X]$, right? Sowe have to calculate these values, don't we? :unsure:
 
Last edited by a moderator:
Physics news on Phys.org
Hey mathmari!

Yep. (Nod)
 
Klaas van Aarsen said:
Yep. (Nod)

We have that $\text{Cov}(X,Y)=E[XY]-E[X]E[Y]$ with \begin{align*}E[XY]&=\sum_{x}\sum_{y}xyP[X=x,Y=y]\\ & =1\cdot 1\cdot \frac{1}{36}+1\cdot 2\cdot \frac{1}{36}+1\cdot 3\cdot \frac{1}{36}+1\cdot 4\cdot \frac{1}{36}+1\cdot 5\cdot \frac{1}{36}+1\cdot 6\cdot \frac{1}{36} \\ & +
2\cdot 2\cdot \frac{2}{36}+2\cdot 3\cdot \frac{1}{36}+2\cdot 4\cdot \frac{1}{36}+2\cdot 5\cdot \frac{1}{36}+2\cdot 6\cdot \frac{1}{36}\\ & +
3\cdot 3\cdot \frac{3}{36}+3\cdot 4\cdot \frac{1}{36}+3\cdot 5\cdot \frac{1}{36}+3\cdot 6\cdot \frac{1}{36} \\ & +
4\cdot 4\cdot \frac{4}{36}+4\cdot 5\cdot \frac{1}{36}+4\cdot 6\cdot \frac{1}{36} \\ & +
5\cdot 5\cdot \frac{5}{36}+5\cdot 6\cdot \frac{1}{36}\\ & +
6\cdot 6\cdot \frac{6}{36}
\\ & =\frac{7}{12} +\frac{11}{9} + 2+ 3 + \frac{155}{36} + 6\\ & =\frac{154}{9}
\end{align*} and \begin{align*}&E[X]=\sum_xxP[X=x]=1\cdot \frac{1}{6}+2\cdot \frac{1}{6}+3\cdot \frac{1}{6}+4\cdot \frac{1}{6}+5\cdot \frac{1}{6}+6\cdot \frac{1}{6}=\frac{7}{2}\\ &E[Y]=\sum_yyP[Y=y]=1\cdot \frac{1}{36}+2\cdot \frac{3}{36}+3\cdot \frac{5}{36}+4\cdot \frac{7}{36}+5\cdot \frac{9}{36}+6\cdot \frac{11}{36}=\frac{161}{36}\end{align*}
So we get $\text{Cov}(X,Y)=E[XY]-E[X]E[Y]=\frac{154}{9}-\frac{7}{2}\cdot \frac{161}{36}=\frac{35}{24}$.

The variance is equal to \begin{align*}Var(X)&=E[X^2]-(E[X])^2=\sum_xx^2P[X=x]-\left (\frac{7}{2}\right )^2\\ & =\left (1^2\cdot \frac{1}{6}+2^2\cdot \frac{1}{6}+3^2\cdot \frac{1}{6}+4^2\cdot \frac{1}{6}+5^2\cdot \frac{1}{6}+6^2\cdot \frac{1}{6}\right )-\frac{49}{4}=\frac{91}{6}-\frac{49}{4}\\ & =\frac{35}{12}\end{align*}

Therefore we get \begin{equation*}b^{\star}=\frac{Cov(X,Y)}{Var(X)}=\frac{\frac{35}{24}}{\frac{35}{12}}=\frac{1}{2}\end{equation*} For $a$ we have that \begin{equation*}a^{\star}=E[Y-b^{\star}X]=E\left [Y-\frac{1}{2}X\right ]=E[Y]-\frac{1}{2}\cdot E[X]=\frac{161}{36}-\frac{1}{2}\cdot \frac{7}{2}=\frac{49}{18}\end{equation*}

Is everything correct and complete? :unsure:
 
So the minimal value is
\begin{align*}E[(Y -(a^{\star}+b^{\star}X))^2]&=E\left [\left (Y -\left (\frac{49}{18}+\frac{1}{2}X\right )\right )^2\right ]\\ & =E\left [\frac{2401}{324} + \frac{49}{18} X + \frac{1}{4}X^2 - \frac{49}{9} Y - X Y + Y^2\right ]\\ & =\frac{2401}{324} + \frac{49}{18} E[X] + \frac{1}{4}E[X^2] - \frac{49}{9} E[Y ]- E[X Y] + E[Y^2]\\ & =\frac{2401}{324} + \frac{49}{18} \cdot \frac{7}{2} + \frac{1}{4}\cdot \frac{91}{6} - \frac{49}{9}\cdot \frac{161}{36}- \frac{154}{9} + E[Y^2]\\ & =-\frac{13433}{648} + E[Y^2]\end{align*}
We have that \begin{equation*}E[Y]=\sum_yy^2P[Y=y]=1^2\cdot \frac{1}{36}+2^2\cdot \frac{3}{36}+3^2\cdot \frac{5}{36}+4^2\cdot \frac{7}{36}+5^2\cdot \frac{9}{36}+6^2\cdot \frac{11}{36}=\frac{791}{36}\end{equation*}
Therefore we get \begin{equation*}E[(Y -(a^{\star}+b^{\star}X))^2]=-\frac{13433}{648} + \frac{791}{36}=\frac{805}{648}\end{equation*}
Is that correct ? :unsure:
 
Typically we should check whether what we found "makes sense".
In the case of a least squares approximation, we usually draw a graph to see if the line we found matches the points more or less. 🤔
A graph also serves to see if it even makes sense to apply a least square approximation.

In this case we can also look at the numbers.
We found the minimal relation $\hat Y=a^*+b^*X=\frac{49}{18} + \frac 12 X$.
For $X=1$ we have equal probabilities for each of the possible $Y$, so we expect a result where $\hat Y$ is in the middle between 3 and 4.
If we fill it in, we get $\hat Y(1)=\frac{49}{18}+\frac 12\cdot 1\approx 3.22$, so that is in the right neighborhood.
We should do the same thing for at least $X=6$ where we expect $\hat Y\approx 6$. 🤔
 

Similar threads

  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 53 ·
2
Replies
53
Views
9K
  • · Replies 2 ·
Replies
2
Views
2K