MHB How do you multiply indexed matrices?

  • Thread starter Thread starter Voldyy
  • Start date Start date
  • Tags Tags
    Matrices
Voldyy
Messages
2
Reaction score
0
Hello, I want to ask if anyone can explain to me how to multiply indexed matrices.
This is an example I have made, but I do not know if it is true
20210111_135937.jpg
 
Physics news on Phys.org
Once again you have posted a problem where miracles are expected to occur.

How did you know how to calculate dp?

Please post the whole problem! We can't help you much if we have to guess at what's going on.

-Dan
 
topsquark said:
Once again you have posted a problem where miracles are expected to occur.

How did you know how to calculate dp?

Please post the whole problem! We can't help you much if we have to guess at what's going on.

-Dan
this is the problem i don't know if what i wrote is true
 
It is extremely difficult to understand what you are writing because you are using a very peculiar notation!

I THINK you mean that
[math]A= \begin{pmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \\7 & 8 & 9 \end{pmatrix}[/math]
that
[math]B= \begin{pmatrix}10 & 11 & 12 \\ 13 & 14 & 15 \\ 16 & 17 & 18 \end{pmatrix}[/math]

and you want to find the product
[math]AB= \begin{pmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \\7 & 8 & 9 \end{pmatrix}\begin{pmatrix}10 & 11 & 12 \\ 13 & 14 & 15 \\ 16 & 17 & 18 \end{pmatrix}[/math].

One way to think about this is that each row of matrix A is a vector, that each column of matrix B is a vector, and you want to take the "dot product" of the three vectors from A with each of the three vectors from B. (you appear to have labeled row and columns with "p", "q", etc. but that seems to me more complicated and confusing than useful.)

For example, the first row in A is [1, 2. 3] and the first column in B is [10, 13, 16]. Their "dot product" is 1(10)+ 2(13)+ 3(16)= 10+ 26+ 48= 84. The value in the first row, first column of AB is 84.

The first row in A is [1, 2, 3] and the second column in B is [11, 14, 17]. Their "dot product" is 1(11)+ 2(14)+ 3(17)= 11+ 28+ 51= 90. The value in the first row, second column of AB is 90.

The last number in the first row of AB is 1(12)+2(15)+ 3(18)= 12+ 30+ 54= 96. The first row of AB is [math]\begin{pmatrix}84 & 90 & 96\end{pmatrix}[/math].

Do the same but using the second row of A, [math]\begin{pmatrix}4 & 5 & 6 \end{pmatrix}[/math] with the three columns of B to get the second row of AB.

Do the same but using the third row of A, [math]\begin{pmatrix}7 & 8 & 9 \end{pmatrix}[/math] with the three columns of B to get the third row of AB.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top