MHB How Do You Prove the Formula for n Choose k?

  • Thread starter Thread starter wittysoup
  • Start date Start date
AI Thread Summary
The discussion focuses on proving the formula for n choose k, expressed as n!/(k!(n-k)!). The user initially struggles with the algebraic steps in their proof and seeks clarification on their approach. They establish a base case and induction hypothesis, then attempt to apply Pascal's identity to progress. After some algebraic manipulation, they successfully derive the inductive step, confirming the proof by induction. The discussion concludes with the user affirming their completion of the proof process.
wittysoup
Messages
7
Reaction score
0
Hello all,

I need a little help with how to go about proving the following:
View attachment 619

the formula for n choose k is n!/(k!(n-k)!)

For this, I have proceeded as follows:

Base case P(j):

View attachment 620

I am not sure if this is correct... but the next step would be to Assume P(k), I get stuck at that step because the algebraic expression does not look right... Am I going about this the right way? Thanks.
 

Attachments

  • sum_ichoosej.PNG
    sum_ichoosej.PNG
    1 KB · Views: 105
  • sum_basecase.PNG
    sum_basecase.PNG
    1.7 KB · Views: 85
Physics news on Phys.org
Your base case $P_j$ would be:

$\displaystyle \sum_{i=j}^j{i \choose j}={j \choose j}=1={j+1 \choose j+1}$

This is true.

Next, state the induction hypothesis $P_k$:

$\displaystyle \sum_{i=j}^k{i \choose j}={k+1 \choose j+1}$

I think my inductive step would be to add ${k+1 \choose j}$ to both sides:

$\displaystyle \sum_{i=j}^k{i \choose j}+{k+1 \choose j}={k+1 \choose j+1}+{k+1 \choose j}$

$\displaystyle \sum_{i=j}^{k+1}{i \choose j}={k+1 \choose j+1}+{k+1 \choose j}$

Now, what you need to do is show that:

$\displaystyle {k+1 \choose j+1}+{k+1 \choose j}={(k+1)+1 \choose j+1}$

Essentially, you need to prove Pascal's identity. Use the definition of the binomial coefficients to do so, and if you get stuck, we can offer further guidance.
 
Thanks for that, it seems like I miscalculated the first result... I am now stuck here, being that I do not know how to simplify this ( I actually worked out further on paper trying to get a common denominator)...

View attachment 621
 

Attachments

  • k_plus1.PNG
    k_plus1.PNG
    2.5 KB · Views: 101
I would state:

$\displaystyle {k+1 \choose j+1}+{k+1 \choose j}=\frac{(k+1)!}{(j+1)!((k+1)-(j+1))!}+\frac{(k+1)!}{j!((k+1)-j)!}$

Simplify a bit:

$\displaystyle {k+1 \choose j+1}+{k+1 \choose j}=\frac{(k+1)!}{(j+1)!(k-j)!}+\frac{(k+1)!}{j!(k+1-j)!}$

Next, factor:

$\displaystyle {k+1 \choose j+1}+{k+1 \choose j}=\frac{(k+1)!}{j!(k-j)!}\left(\frac{1}{j+1}+\frac{1}{k+1-j} \right)$

Combine terms within parentheses:

$\displaystyle {k+1 \choose j+1}+{k+1 \choose j}=\frac{(k+1)!}{j!(k-j)!}\left(\frac{k+1-j+j+1}{(j+1)(k+1-j)} \right)$

Combine like terms:

$\displaystyle {k+1 \choose j+1}+{k+1 \choose j}=\frac{(k+1)!}{j!(k-j)!}\left(\frac{k+2}{(j+1)(k+1-j)} \right)$

Combine factors:

$\displaystyle {k+1 \choose j+1}+{k+1 \choose j}=\frac{(k+2)!}{(j+1)!(k+1-j)!}$

Rewrite right side as binomial coefficient:

$\displaystyle {k+1 \choose j+1}+{k+1 \choose j}={(k+1)+1 \choose j+1}$

Thus, using this result in our inductive step, we obtain:

$\displaystyle \sum_{i=j}^{k+1}{i \choose j}={(k+1)+1 \choose j+1}$

We have derived $P_{k+1}$ from $P_k$ thereby completing the proof by induction.
 
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top