How Do You Solve Nested Square Root Expressions?

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
The discussion focuses on solving nested square root expressions, specifically evaluating the difference between two infinite nested roots: \( \sqrt{11+\sqrt{11+\sqrt{11+\cdots}}} \) and \( \sqrt{7+\sqrt{7+\sqrt{7+\cdots}}} \). The solution involves setting \( x \) for the first expression, leading to the quadratic equation \( x^2 - x - 11 = 0 \), which yields \( x = \frac{1 + 3\sqrt{5}}{2} \). For the second expression, \( y \) is defined similarly, resulting in \( y = \frac{1 + \sqrt{29}}{2} \). The final evaluation of the difference \( x - y \) is \( \frac{3\sqrt{5} - \sqrt{29}}{2} \). This method illustrates a general approach to solving such nested square root problems.
Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Evaluate [math]\left( \sqrt{11+\sqrt{11+\sqrt{11+\cdots}}} \right) - \left( \sqrt{7+\sqrt{7+\sqrt{7+\cdots}}} \right)[/math]

Remember to read the http://www.mathhelpboards.com/threads/773-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) Sudharaka
2) BAdhi
3) Reckoner
4) soroban
5) veronica1999

Solution (from soroban):

[sp]Evaluate: .[/color]$\left(\sqrt{11 + \sqrt{11 + \sqrt{11 + \cdots}}}\right) - \left(\sqrt{7 + \sqrt{7 + \sqrt{7 + \cdots}}}\right) $Let x \:=\:\sqrt{11 + \sqrt{11 + \sqrt{11 + \cdots}}} \quad\Rightarrow\quad x^2 \:=\:11 + \sqrt{11 + \sqrt{11 + \cdots}}

. . [/color]x^2 - 11 \:=\:\sqrt{11 + \sqrt{11 + \cdots}} \quad\Rightarrow\quad x^2 - 11 \:=\:x

. . [/color]x^2 - x - 11 \:=\:0 \quad\Rightarrow\quad x \:=\:\frac{1\pm\sqrt{45}}{2}

Hence: .[/color]x \:=\:\frac{1 + 3\sqrt{5}}{2}Let y \:=\:\sqrt{7 + \sqrt{7 + \sqrt{7 + \cdots }}} \quad\Rightarrow\quad y^2 \:=\:7 + \sqrt{7 + \sqrt{7 + \cdots }}

. . [/color]y^2 - 7 \:=\:\sqrt{7 + \sqrt{7 + \cdots }} \quad\Rightarrow\quad y^2 - 7 \:=\:y

. . [/color]y^2 - y - 7 \:=\:0 \quad \Rightarrow \quad y \:=\:\frac{1 \pm \sqrt{29}}{2}

Hence: .[/color]y \:=\:\frac{1 + \sqrt{29}}{2}Therefore: .[/color]x - y \;=\;\left(\frac{1+3\sqrt{5}}{2}\right) - \left(\frac{1+\sqrt{29}}{2}\right) \;=\;\frac{3\sqrt{5} -\sqrt{29}}{2}
[/size][/sp]

General solution to this form (from BAdhi):

[sp]let's consider a general expression for the statement in the brackets of the given problem and take it as 'x'

[math]\sqrt{a+\sqrt{a+\sqrt{a+\dots }}}=x[/math]

by squaring the both sides,

[math]a+\underbrace{\sqrt{a+\sqrt{a+\sqrt{a+\dots }}}}_{x}=x^2[/math]

[math]a+x=x^2[/math]

[math]x^2-x-a=0[/math]

since this is a quadric equation the answer is,

[math]x=\frac{-(-1)\pm \sqrt{(-1)^2-4\times 1\times (-a)}}{2\times 1}[/math]

[math]x=\frac{1\pm \sqrt{1+4a}}{2}[/math][/sp]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K