How Does a Markov Chain Model the Distribution of Stickers Among Children?

Click For Summary

Discussion Overview

The discussion revolves around modeling the distribution of stickers taken by children from a box using a Markov chain framework. Participants explore the expected number of stickers taken by children in sequence, particularly focusing on the second child's expectations based on the initial number of stickers and the actions of the first child.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant poses a question regarding the expectation of stickers taken by the second child as a function of the initial number of stickers, N.
  • Another participant clarifies that if the first child takes k stickers, the second child will choose from the remaining N-k stickers, suggesting a uniform distribution for the second child's choice.
  • A different participant attempts to derive a formula for the expected number of stickers taken by the second child, providing a calculation based on the uniform distribution of choices.
  • One participant challenges the assumption about the distribution of stickers taken by the first child, asserting it should be uniformly distributed between 1 and N, and proposes a nested expectation approach for calculating the second child's expected stickers.

Areas of Agreement / Disagreement

Participants express differing views on the distribution of stickers taken by the first child and how it affects the second child's expectations. There is no consensus on the correct approach or formula, and multiple competing models are presented.

Contextual Notes

Participants rely on assumptions about uniform distributions and the independence of children's choices, which may not be fully justified. The discussion includes unresolved mathematical steps and varying interpretations of the problem setup.

rachelro
Messages
4
Reaction score
0
A teacher leaves out a box of N stickers for children to take home as treats. Children form a queue and look at the box one by one. When a child finds k⩾1 stickers in the box, he or she takes a random number of stickers that is uniformly distributed on {1,2,…,k}.

1- What is the expectation of the number of stickers taken by the second child, as a function of the initial number of stickers N?

2- If E_N denotes the expected number of children who take at least one sticker from the box given that it initially contained N stickers. How can I compute a formula to represent E_N+1 in terms of E_1+⋯+E_N. Also, how E_N can be expressed in terms of k?
 
Physics news on Phys.org
Hello and welcome to MHB, Sarah! :D

In order for our helpers to provide you with the best help, we ask that you show what you have tried so far, or what your thoughts are on how to begin. This way, we can show you what you may be doing wrong, or provide you with a hint or suggestion on how to proceed.
 
Sarah said:
A teacher leaves out a box of N stickers for children to take home as treats. Children form a queue and look at the box one by one. When a child finds k⩾1 stickers in the box, he or she takes a random number of stickers that is uniformly distributed on {1,2,…,k}.

Very interesting problem!... in order to understand correcly however let's do an example: the first child finds N stichers... that meants that he/she takes a random number of stickers uniformly distributed on {1,2,...,N}?... and that meants that, if the first child selects k stichers, the number of stickers selected by the second child is uniformly distributed in {1,2,...,N-k}?... Kind regards $\chi$ $\sigma$
 
Sarah said:
A teacher leaves out a box of N stickers for children to take home as treats. Children form a queue and look at the box one by one. When a child finds k⩾1 stickers in the box, he or she takes a random number of stickers that is uniformly distributed on {1,2,…,k}.

1- What is the expectation of the number of stickers taken by the second child, as a function of the initial number of stickers N?

Under the assumption that what I written in post #3 is true, let's try to answer to the question 1. The mean value of object selected among k is...

$\displaystyle E\{n\} = \sum_{n=1}^{k} \frac{n}{k} = \frac{k\ (k+1)}{k\ 2} = \frac{k+1}{2}$ (1)

If $n_{1}$ is the number of objects selected by the first child, then the second child can choose among $N-n_{1}$ objects so the mean numbers of object choosen by ther second child is...

$\displaystyle E \{n_{2}\} = \frac{1}{2\ N}\ \sum_{n=1}^{n} (N-n+1) = \frac{1}{2\ N}\ \frac{N\ (N+1)}{2} = \frac{N+1}{4}$ (2)

Kind regards

$\chi$ $\sigma$
 
Thank you for your comment, but I think the distribution for the first child should be between [1,N]. I was thinking to go ahead with the following argument:

n1 is the number of objects taken by the first child and it is uniformly distributed in [1, N], but n2 is uniformly distributed in [1, N-n1]. so we have to evaluate:
E(n2)= E( E(n2|N-n1))
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
10K
Replies
16
Views
2K