# Probability Definition and 320 Discussions

Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, 0 indicates impossibility of the event and 1 indicates certainty. The higher the probability of an event, the more likely it is that the event will occur. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%).
These concepts have been given an axiomatic mathematical formalization in probability theory, which is used widely in areas of study such as statistics, mathematics, science, finance, gambling, artificial intelligence, machine learning, computer science, game theory, and philosophy to, for example, draw inferences about the expected frequency of events. Probability theory is also used to describe the underlying mechanics and regularities of complex systems.

View More On Wikipedia.org
1. ### Probabilities of measuring ##\pm \hbar/2## along ##\hat{n}##?

Hi, Given a spin in the state ##|z + \rangle##, i.e., pointing up along the z-axis what are the probabilities of measuring ##\pm \hbar/2## along ##\hat{n}##? My problem is that I'm not sure to understand the statement. It seems like I have to find the probabilities of measuring an eigenvalue...
2. ### Probability of not getting a prize

Let W be the event that a prize is received. Then ##p(W) + p(not ~ W) = 1##. We need to find ##p(not W)## and so let's try to find ##p(W)## and then we can subtract it from 1 to get ##p(not ~ W)##. The experiment is buying 2 tickets. So, $$p(W) = \frac { {}^{10}C_2} { {}^{10000}C_2}$$ Thus...