How Does Integration to Infinity Work in Calculus?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Infinity Integration
Click For Summary
SUMMARY

The discussion focuses on the evaluation of the improper integral \( I = \int_{2}^{\infty} \frac{1}{x \ln(x)} \, dx \). By using the substitution \( u = \ln(x) \) and \( du = \frac{1}{x} \, dx \), the integral simplifies to \( I = \int_{2}^{\infty} \frac{1}{u} \, du \), which evaluates to \( \ln(\ln(x)) \). The final evaluation shows that as \( x \) approaches infinity, \( I \) diverges to infinity, confirming that the integral does not converge.

PREREQUISITES
  • Understanding of improper integrals
  • Knowledge of substitution methods in calculus
  • Familiarity with logarithmic functions
  • Basic concepts of limits in calculus
NEXT STEPS
  • Study the convergence criteria for improper integrals
  • Learn about the comparison test for integrals
  • Explore advanced substitution techniques in calculus
  • Investigate the properties of logarithmic functions and their applications in integration
USEFUL FOR

Students of calculus, mathematics educators, and anyone interested in advanced integration techniques and the behavior of improper integrals.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$$\Large{§8.8. 14} \\
\tiny\text {Leeward 206 Integration to Infinity}\\
\displaystyle
I=\int_{2 }^{\infty} \frac{1}{x\ln\left({x}\right)}\,dx \\
\begin{align}\displaystyle
u& = \ln\left({x}\right) &
du&=\frac{1}{x} \ d{x}
\end{align} \\
\displaystyle
I=\int_{2}^{\infty}\frac{1}{u} \,du = \ln\left({u}\right)\\
\text {back substittute u} \\
I= \ln\left({\ln\left({x}\right)}\right)\\
\text {don't see how this can go to }\infty \\
\tiny\text{ Surf the Nations math study group}$$
🏄 🏄 🏄 🏄 🏄
 
Last edited:
Physics news on Phys.org
What do you get if you set it up as a limit?
 
$$\Large{§8.8. 14} \\
\tiny\text {Leeward 206 Integration to Infinity}\\
\displaystyle
I=\int_{2 }^{\infty} \frac{1}{x\ln\left({x}\right)}\,dx \\
\begin{align}\displaystyle
u& = \ln\left({x}\right) &
du&=\frac{1}{x} \ d{x}
\end{align} \\
\displaystyle
I=\int_{2}^{\infty}\frac{1}{u} \,du = \ln\left({u}\right)\\
\text {back substittute u} \\
\displaystyle
I= \left[\ln\left(
{\ln\left({x}\right)}\right)
\right]_2^\infty = \left[2+\infty\right]=\infty\\
\tiny\text{ Surf the Nations math study group}$$
🏄 🏄
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K