MHB How Does the Poisson Process Model Customer Arrivals Over Time?

Poirot1
Messages
243
Reaction score
0
Let customers arrive according to a poisson process with parameter st and let $X_{t}$ denote number of customers in the system by time t. Consider an interval [t,t+h] with h small.

Show that P(1 arrival)= sh + o[h], P(more than one arrival)=o[h] and P(no arrival)=1-sh+o[h].

I know P(1 arrival)=$she^{-sh}$ but how to get further?

Thanks
 
Last edited:
Physics news on Phys.org
Poirot said:
Let customers arrive according to a poisson process with parameter st and let $X_{t}$ denote number of customers in the system by time t. Consider an interval [t,t+h] with h small.

Show that P(1 arrival)= sh + o[h], P(more than one arrival)=o[h] and P(no arrival)=1-sh+o[h].

I know P(1 arrival)=$she^{-sh}$ but how to get further?

Thanks

We have a Poisson process with mean arrival rate \(s\), then the number of arrivals in an interval of length \(h\) is \(N\) and \( N \sim P(sh)\).

Then:

\( \displaystyle p(N=1)=sh\; e^{-sh} =sh \left( 1-sh + \frac{s^2h^2}{2}-... \right) = sh(1 + R(sh))=sh + shR(sh)\)

where the \(|R(sh)|\) for small positive \(h\) is bounded by \(sh\) (the truncation error for an alternating series of terms of decreasing absolute value is bounded by the absolute value of the first neglected term), so:

\( \displaystyle |sh \;R(sh)| < s^2h^2 = o ( h)\)

since \( \lim_{h \to 0} (s^2 h^2)/h = 0 \).

Now do the no arrivals case, then \(p(N>1)=1-(p(N=0)+p(N=1))\)

CB
 
Thanks, but can you explain what R(sh) is ?
 
Poirot said:
Thanks, but can you explain what R(sh) is ?

It is the remainder when the series is truncated after the first term, or the sum of the tail of the infinite series (they are the same thing).

CB
 
Ok I can easily do the rest now. Thanks
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top