MHB How does the solution for the initial value problem change over time?

  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
The discussion focuses on the evolution of the solution to the initial value problem defined by the equation u_t + uu_x = 0 with specified initial conditions. The analysis reveals that the solution changes over time, with distinct behaviors for t < 1 and t ≥ 1, leading to different forms of the solution. For t < 1, the solution remains classical, while for t ≥ 1, it transitions to a weak solution due to the emergence of singularities. The critical point at x = 2 is highlighted as a potential breakdown in the solution, prompting questions about the nature of the solution beyond this point. Overall, the discussion emphasizes the complexity of the initial value problem and the implications of time on its solutions.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

We have the problem \begin{align*}&u_t+uu_x=0 \\ &u(x,0)=\begin{cases}2, & x<0 \\ 2-x, & x\in[0,1] \\1, & x>1\end{cases}\end{align*} We have the problems $$\frac{dx}{dt}=u \ \text{ and } \ \frac{du}{dt}=0$$ From the first one we get $x=ct+c_2$ and for $t=0$ we get $x_0=c_2$ and so we get $x_0=x-ct$.

From the second one we get $$\frac{dx}{dt}=u(x,t)=u(x_0,0)=\begin{cases}2, & x_0<0 \\ 2-x_0, & x_0\in[0,1] \\1 , & x_0>1\end{cases}$$ Solving for $x_0$ we get $$x_0=\begin{cases}x-2t, & x<2t \\ \frac{2t-x}{t-1}, & \frac{2t-x}{t-1} \in [0.1] \\ x-t, & x>t\end{cases}$$ So, $u$ is equal to $$u=\begin{cases}2, & x<2t \\ 2-\frac{2t-x}{t-1}, & \frac{x-2}{t-1}\in[0,1] \\1 , & x>t\end{cases}=\begin{cases}2, & x<2t \\ \frac{x-2}{t-1}, & \frac{x-2}{t-1}\in[0,1] \\1 , & x>t\end{cases}$$ For $t<1$ we get $$u=\begin{cases}2, & x<2t \\ \frac{x-2}{t-1}, & 2t\leq x\leq t+1 \\1 , & x>t\end{cases}$$ and for $t\geq 1$ we get $$u=\begin{cases}2, & x<2t \\ \frac{x-2}{t-1}, & t+1\leq x\leq 2t \\1 , & x>t\end{cases}$$ This can be simplified into $$u=\begin{cases}2, & x<2t \\1 , & x>t\end{cases}$$ or not?

According to the solution the case $t\geq 1$ is $$u=\begin{cases}2, & x<\frac{3}{2}t+\frac{1}{2} \\1 , & x>\frac{3}{2}t+\frac{1}{2}\end{cases}$$ But how do we get the inequalities with $\frac{3}{2}t+\frac{1}{2}$ ? (Thinking)Also... why do we have for $t<1$ a classical solution, but for $t>1$ a weak one?
 
Last edited:
Physics news on Phys.org
Or can we not apply the method I did? (Thinking)
 
Hmm... doesn't the solution break down at $x=2$? (Wondering)

The initial value problem gives us solutions up to $x=2$, which is a singularity.
What happens after is effectively another initial value problem, which I think could go anywhere, including the given solution. (Thinking)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K