Undergrad How many subspaces can be formed in a vector space over a finite field?

  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on determining the formula for the number of subspaces in a vector space of dimension $n$ over a finite field with $p$ elements. The problem, presented as the Problem of the Week (POTW), remains unanswered, indicating a gap in community engagement on this advanced topic. The solution involves combinatorial techniques and the application of the Gaussian binomial coefficient, which quantifies the number of $k$-dimensional subspaces in an $n$-dimensional vector space over a finite field.

PREREQUISITES
  • Understanding of vector spaces and their dimensions
  • Familiarity with finite fields and their properties
  • Knowledge of combinatorial mathematics, specifically Gaussian binomial coefficients
  • Basic linear algebra concepts
NEXT STEPS
  • Research the formula for Gaussian binomial coefficients
  • Study the properties of finite fields, particularly GF(p)
  • Explore the concept of vector space dimension and its implications
  • Learn about combinatorial techniques in linear algebra
USEFUL FOR

Mathematicians, students of linear algebra, and researchers interested in combinatorial geometry and finite fields will benefit from this discussion.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Find a formula for the number of subspaces of a vector space of dimension $n$ over a finite field with $p$ elements.

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. You can read my solution below.
Let $V$ be an $n$-vector space over a finite field $\Bbb F_p$ of $p$ elements. The number of subspaces of $V$ is

$$1 + \sum_{k = 1}^n \frac{(p^n - 1)(p^n - p)\cdots (p^n - p^{k-1})}{(p^k - 1)(p^k - p)\cdots (p^k - p^{k-1})}$$

Let $k$ be a fixed integer $>1$. First we enumerate the number of subspaces of dimension $k$. A $k$-dimensional subspace is formed by $k$ linearly independent vectors. The first independent vector $v_1$ must be nonzero, so there are $p^n - 1$ choices for $v_1$. Having chosen independent vectors $v_1,\ldots, v_{j}$, we choose $v_{j+1}$ outside the $j$-dimensional subspace spanned by $v_1,\ldots, v_j$, which has $p^j$ elements. Hence there are $p^n - p^j$ ways to choose $v_{j+1}$. Thus, there are $(p^n - 1)(p^n - p)\cdots (p^n - p^{k-1})$ ways to form a linearly independent set $\{v_1,\ldots, v_k\}$ of $k$-vectors. However, there may be repetition: two sets of $k$-linearly independent vectors span the same subspace if and only if they are bases of the subspace. So we divide by the total number of bases of a vector space of dimension $k$. A similar argument to the one given is $(p^k - 1)(p^k - p)\cdots (p^k - p^{k-1})$. So there are
$$\frac{(p^n - 1)(p^n - p)\cdots (p^n - p^{k-1})}{(p^k - 1)(p^k - p)\cdots (p^k - p^{k-1})}$$ subspaces of $V$ of dimension $k$. Since there is only one subspace of dimension zero, the total number of subspaces of $V$ is

$$\sum_{k = 0}^n (\text{no. of subspaces of $V$ of dimension $k$}) = 1 + \sum_{k = 1}^n \frac{(p^n - 1)(p^n - p)\cdots (p^n - p^{k-1})}{(p^k - 1)(p^k - p)\cdots (p^k - p^{k-1})}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
4K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K